我们引入了一个新的差异隐私(DP)会计师,称为鞍点会计师(SPA)。SPA以准确而快速的方式近似保证DP机制的组成。我们的方法是受鞍点法的启发,这是一种统计中无处不在的数值技术。通过为SPA提供的近似误差,我们通过得出上限和下限来证明性能的严格保证。水疗中心的关键是与中心极限定理的大型探空方法的组合,我们通过指数倾斜与DP机制相对应的隐私损失随机变量来得出。水疗中心的一个关键优点是,它可以在$ n $折叠机制的$ n $折叠组成下持续运行。数值实验表明,水疗中心的准确性与更快的运行时的最新会计方法相当。
translated by 谷歌翻译
许多现代的机器学习算法由简单的私人算法组成;因此,一个越来越重要的问题是有效计算组成下的整体隐私损失。在这项研究中,我们介绍了Edgeworth会计师,这是一种分析方法,用于构成私人算法的差异隐私保证。 Edgeworth会计师首先使用$ f $ - 不同的隐私框架来无误地跟踪构图下的隐私损失,该框架使我们能够使用隐私损失log-logikelihoodhiehood(pllrs)表达隐私保证。顾名思义,该会计师接下来使用Edgeworth扩展到上下界限PLLR的总和的概率分布。此外,通过依靠一种使用简单的技术近似复杂分布的技术,我们证明了Edgeworth会计师可以应用于任何噪声加成机制的组成。由于Edgeworth扩展的某些吸引人的功能,该会计师提供的$(\ epsilon,\ delta)$ - 差异隐私范围是非反应的,基本上没有额外的计算成本,而不是先前的方法运行时间随成分的数量而增加。最后,我们证明了我们的上和下部$(\ epsilon,\ delta)$ - 差异隐私范围在联合分析和培训私人深度学习模型的某些制度中紧密。
translated by 谷歌翻译
特征在于构图的隐私劣化,即隐私会计,是差异隐私(DP)的基本话题,许多应用于差异私有机器学习和联合学习。我们提出了近期进步(Renyi DP,Privacy Compiles,$-D $ -dp和Pld形式主义)的统一,通过\ emph {phi $ \ phi $ -function){占主导地位}隐私损失随机变量。我们展示了我们的方法允许\ emph {natural}自适应组成等renyi dp,提供\ emph {完全紧张}隐私会计,如pld,并且可以(通常是\ memph {docklyly})转换为隐私权概况和$ f $ -dp ,从而提供$(\ epsilon,\ delta)$ - DP保证和可解释的权衡职能。算法,我们提出了一个\ xper {分析傅里叶会计师},它象征性地表示$ \ phi $ -functions的\ icph {complex}对数,并使用高斯正交进行数值计算。在几个受欢迎的DP机制及其撤销的对应物上,我们展示了我们在理论和实验中的方法的灵活性和紧张性。
translated by 谷歌翻译
隐私损失分配(PLD)在差异隐私(DP)的背景下对机制的隐私损失进行了严格的特征。最近的工作表明,与其他已知方法相比,基于PLD的会计允许更紧密的$(\ Varepsilon,\ delta)$ - DP保证。基于PLD的会计中的一个关键问题是如何在任何指定的离散支持上近似任何(潜在的连续)PLD。我们提出了解决这个问题的新方法。我们的方法都支持悲观的估计,它高估了曲棍球刺激的差异(即$ \ delta $)的任何值的$ \ varepsilon $和乐观的估计,从而低估了曲棍球粘贴的分歧。此外,我们表明,在所有悲观估计中,我们的悲观估计是最好的。实验评估表明,与以前的方法相比,我们的方法可以在更大的离散时间间隔内工作,同时保持相似的误差,但比现有方法更近似。
translated by 谷歌翻译
Concentrated differential privacy" was recently introduced by Dwork and Rothblum as a relaxation of differential privacy, which permits sharper analyses of many privacy-preserving computations. We present an alternative formulation of the concept of concentrated differential privacy in terms of the Rényi divergence between the distributions obtained by running an algorithm on neighboring inputs. With this reformulation in hand, we prove sharper quantitative results, establish lower bounds, and raise a few new questions. We also unify this approach with approximate differential privacy by giving an appropriate definition of "approximate concentrated differential privacy."
translated by 谷歌翻译
我们引入了一种用于隐私随机变量数值组成的新算法,可用于计算机制组成的准确差分隐私参数。我们的算法实现了$ \ mathrm {polylog}(k)$的运行时间和内存使用量,用于从广泛的机制($ k $ times)中进行自我组合的任务;该类别包括在分析差异私有随机梯度下降中出现的亚采样高斯机制。相比之下,Gopi等人的最新工作。(Neurips 2021)在同一任务中获得了$ \ widetilde {o}(\ sqrt {k})$的运行时间。我们的方法扩展到在同一类中撰写$ k $不同机制的情况,从$ \ wideTilde {o}(k^{1.5})$改善其运行时间和内存使用量到$ \ widetilde {o}(k)$。
translated by 谷歌翻译
构建差异私有(DP)估计器需要得出观察结果的最大影响,如果在输入数据或估计器上没有外源性界限,这可能很困难,尤其是在高维度设置中。本文表明,在这方面,统计深度(即半空间深度和回归深度)的标准概念在这方面尤其有利,这在于单个观察值的最大影响很容易分析,并且该值通常很低。这用于使用这两个统计深度概念的最大值来激励新的近似DP位置和回归估计器。还提供了近似DP回归估计器的更高效的变体。此外,为了避免要求用户对估计和/或观察结果指定先验界限,描述了这些DP机制的变体,即满足随机差异隐私(RDP),这是Hall,Wasserman和Wasserman和Wasserman和Wasserman提供的差异隐私的放松Rinaldo(2013)。我们还提供了此处提出的两种DP回归方法的模拟。当样本量至少为100-200或隐私性损失预算足够高时,提出的估计器似乎相对于现有的DP回归方法表现出色。
translated by 谷歌翻译
我们呈现渐近最优的$(\ epsilon,\ delta)$差异私有机制,用于回答多个,自适应的$ \ delta $ -sursitive查询,解决Steinke和Ullman的猜想[2020]。我们的算法具有显着的优点,即它向每个查询增加独立的有界噪声,从而提供绝对误差。此外,我们在自适应数据分析中应用了我们的算法,获得了使用有限样本对某些基础分布的多个查询的改进保证。数值计算表明,界限噪声机制在许多标准设置中优于高斯机制。
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
我们给出了第一个多项式时间和样本$(\ epsilon,\ delta)$ - 差异私有(DP)算法,以估计存在恒定的对抗性异常分数的平均值,协方差和更高的时刻。我们的算法成功用于分布的分布系列,以便在经济估计上满足两个学习的良好性质:定向时刻的可证明的子销售,以及2度多项式的可证式超分子。我们的恢复保证持有“右仿射效率规范”:Mahalanobis距离的平均值,乘法谱和相对Frobenius距离保证,适用于更高时刻的协方差和注射规范。先前的作品获得了私有稳健算法,用于界限协方差的子静脉分布的平均估计。对于协方差估算,我们的是第一算法(即使在没有异常值的情况下也是在没有任何条件号的假设的情况下成功的。我们的算法从一个新的框架出现,该框架提供了一种用于修改凸面放宽的一般蓝图,以便在算法在其运行中产生正确的正确性的证人,以满足适当的参数规范中的强烈最坏情况稳定性。我们验证了用于修改标准的平方(SOS)SEMIDEFINITE编程放松的担保,以实现鲁棒估算。我们的隐私保障是通过将稳定性保证与新的“估计依赖性”噪声注入机制相结合来获得,其中噪声比例与估计的协方差的特征值。我们认为,此框架更加有用,以获得强大的估算器的DP对应者。独立于我们的工作,Ashtiani和Liaw [Al21]还获得了高斯分布的多项式时间和样本私有鲁棒估计算法。
translated by 谷歌翻译
最大信息系数(MIC)是一个强大的统计量,可以识别变量之间的依赖性。但是,它可以应用于敏感数据,并且发布可能会泄漏私人信息。作为解决方案,我们提出算法以提供差异隐私的方式近似麦克风。我们表明,经典拉普拉斯机制的自然应用产生的精度不足。因此,我们介绍了MICT统计量,这是一种新的MIC近似值,与差异隐私更加兼容。我们证明MICS是麦克风的一致估计器,我们提供了两个差异性私有版本。我们对各种真实和合成数据集进行实验。结果表明,私人微统计数据极大地超过了拉普拉斯机制的直接应用。此外,对现实世界数据集的实验显示出准确性,当样本量至少适中时可用。
translated by 谷歌翻译
我们给出了第一个多项式算法来估计$ d $ -variate概率分布的平均值,从$ \ tilde {o}(d)$独立的样本受到纯粹的差异隐私的界限。此问题的现有算法无论是呈指数运行时间,需要$ \ OMEGA(D ^ {1.5})$样本,或仅满足较弱的集中或近似差分隐私条件。特别地,所有先前的多项式算法都需要$ d ^ {1+ \ omega(1)} $ samples,以保证“加密”高概率,1-2 ^ { - d ^ {\ omega(1) $,虽然我们的算法保留$ \ tilde {o}(d)$ SAMPS复杂性即使在此严格设置中也是如此。我们的主要技术是使用强大的方块方法(SOS)来设计差异私有算法的新方法。算法的证据是在高维算法统计数据中的许多近期作品中的一个关键主题 - 显然需要指数运行时间,但可以通过低度方块证明可以捕获其分析可以自动变成多项式 - 时间算法具有相同的可证明担保。我们展示了私有算法的类似证据现象:工作型指数机制的实例显然需要指数时间,但可以用低度SOS样张分析的指数时间,可以自动转换为多项式差异私有算法。我们证明了捕获这种现象的元定理,我们希望在私人算法设计中广泛使用。我们的技术还在高维度之间绘制了差异私有和强大统计数据之间的新连接。特别是通过我们的校验算法镜头来看,几次研究的SOS证明在近期作品中的算法稳健统计中直接产生了我们差异私有平均估计算法的关键组成部分。
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
在本文中,我们重新审视了私人经验风险最小化(DP-erm)和差异私有随机凸优化(DP-SCO)的问题。我们表明,来自统计物理学(Langevin Exfusion(LD))的经过良好研究的连续时间算法同时为DP-SCO和DP-SCO提供了最佳的隐私/实用性权衡,$ \ epsilon $ -DP和$ $ \ epsilon $ -DP和$ (\ epsilon,\ delta)$ - dp均用于凸和强烈凸损失函数。我们为LD提供新的时间和尺寸独立统一稳定性,并使用我们为$ \ epsilon $ -DP提供相应的最佳超额人口风险保证。 $ \ epsilon $ -DP的DP-SCO保证的一个重要属性是,它们将非私人最佳界限匹配为$ \ epsilon \与\ infty $。在此过程中,我们提供了各种技术工具,这些工具可能引起独立的关注:i)在两个相邻数据集上运行损失功能时,一个新的r \'enyi Divergence绑定了LD,ii)最后一个过多的经验风险范围迭代LD,类似于Shamir和Zhang的嘈杂随机梯度下降(SGD)和iii)的LD,对LD进行了两期多余的风险分析,其中第一阶段是当扩散在任何合理意义上都没有在任何合理意义上融合到固定分布时,在第二阶段扩散已收敛到吉布斯分布的变体。我们的普遍性结果至关重要地依赖于LD的动力学。当它融合到固定分布时,我们获得了$ \ epsilon $ -DP的最佳界限。当它仅在很短的时间内运行$ \ propto 1/p $时,我们在$(\ epsilon,\ delta)$ -DP下获得最佳界限。在这里,$ p $是模型空间的维度。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successive elimination algorithm for strictly optimal best-arm identification, we show that our algorithm is $\delta$-PAC and we characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem, as we show when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support-size, and we characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.
translated by 谷歌翻译
Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality. * Google.† OpenAI. Work done while at Google.
translated by 谷歌翻译
我们考虑一个平台从隐私敏感用户收集数据的问题,以估计潜在的感兴趣的参数。我们将这个问题作为贝叶斯的最佳机制设计问题,其中个人可以共享她的(可验证的)数据以换取货币奖励或服务,但同时有一个(私人)的异构隐私成本,我们量化使用差异隐私。我们考虑两个流行的差异隐私设置,为用户提供隐私保障:中央和本地。在两个设置中,我们为估计错误建立Minimax下限,并导出(接近)用户的异构隐私损失水平的最佳估计器。在这个特征上构建,我们将机制设计问题构成为最佳选择,以估计和支付将引起用户隐私敏感性的真实报告。在隐私敏感性分布的规律性条件下,我们开发有效的算法机制来解决两个隐私设置中的这个问题。我们在中央设置中的机制可以在时间$ \ mathcal {o}(n \ log n)$,其中$ n $是当地设置中的用户数以及我们的机制承认多项式时间近似方案(PTA)。
translated by 谷歌翻译
Popular iterative algorithms such as boosting methods and coordinate descent on linear models converge to the maximum $\ell_1$-margin classifier, a.k.a. sparse hard-margin SVM, in high dimensional regimes where the data is linearly separable. Previous works consistently show that many estimators relying on the $\ell_1$-norm achieve improved statistical rates for hard sparse ground truths. We show that surprisingly, this adaptivity does not apply to the maximum $\ell_1$-margin classifier for a standard discriminative setting. In particular, for the noiseless setting, we prove tight upper and lower bounds for the prediction error that match existing rates of order $\frac{\|\wgt\|_1^{2/3}}{n^{1/3}}$ for general ground truths. To complete the picture, we show that when interpolating noisy observations, the error vanishes at a rate of order $\frac{1}{\sqrt{\log(d/n)}}$. We are therefore first to show benign overfitting for the maximum $\ell_1$-margin classifier.
translated by 谷歌翻译
We study a natural extension of classical empirical risk minimization, where the hypothesis space is a random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned by a random subset of the data, recovering as a special case Nystrom approaches for kernel methods. Considering random subspaces naturally leads to computational savings, but the question is whether the corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the hinge loss used in support vector machines. This unified analysis requires developing new proofs, that use different technical tools, such as sub-gaussian inputs, to achieve fast rates. Our main results show the existence of different settings, depending on how hard the learning problem is, for which computational efficiency can be improved with no loss in performance.
translated by 谷歌翻译