由于BERT出现,变压器语言模型和转移学习已成为自然语言理解任务的最先进。最近,一些作品适用于特定领域的预训练,专制模型,例如科学论文,医疗文件等。在这项工作中,我们呈现RoberTuito,用于西班牙语中的用户生成内容的预先训练的语言模型。我们在西班牙语中培训了罗伯特托5亿推文。关于涉及用户生成文本的4个任务的基准测试显示,罗伯特托多于西班牙语的其他预先接受的语言模型。为了帮助进一步研究,我们将罗伯特多公开可在HuggingFace Model Hub上提供。
translated by 谷歌翻译
We introduce hp-greedy, a refinement approach for building gravitational wave surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: i) representations of lower dimension with no loss of accuracy, ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of gravitational waves emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and ii) the search of gravitational waves through clustering and nearest neighbors.
translated by 谷歌翻译
这项工作在拆分计算领域迈出了重大步骤,即如何拆分深神经网络以将其早期部分托管在嵌入式设备上,而其余则在服务器上。到目前为止,已经确定了潜在的分裂位置,以利用独特的建筑方面,即基于层尺寸。在此范式下,只有在执行分裂并重新训练整个管道后,才能评估分裂的疗效,从而对所有合理的分裂点在时间方面进行详尽的评估。在这里,我们表明,不仅层的结构确实很重要,而且其中包含的神经元的重要性也很重要。如果神经元相对于正确的班级决策,神经元很重要。因此,应在具有高密度的重要神经元的层后立即施加拆分,以保留流动的信息。根据这个想法,我们提出了可解释的拆分(i-split):通过提供有关该分型在分类准确性方面的表现,事先对其有效实现的可靠性,以确定最合适的分裂点的过程。作为I-Split的另一个重大贡献,我们表明,多类分类问题的分裂点的最佳选择还取决于网络必须处理的特定类别。详尽的实验已在两个网络(VGG16和Resnet-50)以及三个数据集(Tiny-Imagenet-200,Notmnist和胸部X射线肺炎)上进行。源代码可在https://github.com/vips4/i-split上获得。
translated by 谷歌翻译
传统的自动门不能区分希望穿过门和经过门的人们,因此他们经常不必要地打开。这导致需要在商业和非商业环境中采用新系统:智能门。特别是,智能门系统根据周围环境的社会环境预测了门附近的人们的意图,然后就是否打开门做出合理的决定。这项工作提出了与智能门有关的第一张纸张,没有铃铛和哨子。我们首先指出,问题不仅涉及可靠性,气候控制,安全性和操作方式。的确,通过对近亲学和场景推理的复杂结合分析,一种预测门附近人们意图的系统还涉及对场景的社会背景的更深入了解。此外,我们对自动门进行了详尽的文献综述,提供了一种新型的系统配方。此外,我们对智能门的未来应用,道德缺陷的描述和立法问题进行了分析。
translated by 谷歌翻译
机器人布操作是自动机器人系统的相关挑战性问题。高度可变形的对象,因为纺织品在操纵过程中可以采用多种配置和形状。因此,机器人不仅应该了解当前的布料配置,还应能够预测布的未来行为。本文通过使用模型预测控制(MPC)策略在对象的其他部分应用动作,从而解决了间接控制纺织对象某些点的配置的问题,该策略还允许间接控制的行为点。设计的控制器找到了最佳控制信号,以实现所需的未来目标配置。本文中的探索场景考虑了通过抓住其上角,以平方布的下角跟踪参考轨迹。为此,我们提出并验证线性布模型,该模型允许实时解决与MPC相关的优化问题。增强学习(RL)技术用于学习所提出的布模型的最佳参数,并调整所得的MPC。在模拟中获得准确的跟踪结果后,在真实的机器人中实现并执行了完整的控制方案,即使在不利条件下也可以获得准确的跟踪。尽管总观察到的误差达到5 cm标记,但对于30x30 cm的布,分析表明,MPC对该值的贡献少于30%。
translated by 谷歌翻译
软机器人操纵器对于在受限环境中的医疗干预或工业检查等一系列应用都具有吸引力。文献中已经提出了无数的软机器人操纵器,但是它们的设计往往相对相似,并且通常提供相对较低的力。这限制了他们可以携带的有效载荷,因此限制了它们的可用性。在公共框架下不可用不同设计的力的比较,并且设计具有不同的直径和功能,使它们难以比较。在本文中,我们介绍了一种软机器人操纵器的设计,该设计的优化为最大化其力,同时尊重典型的应用程序约束,例如大小,工作区,有效负载能力和最大压力。此处介绍的设计具有一个优势,即它变为最佳设计,因为它被加压到朝不同方向移动,这会导致较高的横向力。该机器人是使用一组原理设计的,因此可以适应其他应用程序。我们还为软机器人操纵器提供了非二维分析,并将其应用于此处提出的设计的性能与文献中其他设计的性能。我们表明,我们的设计比同一类别中的其他设计具有更高的力量。实验结果证实了我们提出的设计的较高力量。
translated by 谷歌翻译
FM合成是一种众所周知的算法,用于从紧凑的设计原始素中生成复杂的音色。通常具有MIDI接口,通常是不切实际的,从音频源进行控制。另一方面,可区分的数字信号处理(DDSP)已通过深度神经网络(DNN)启用了细微的音频渲染,这些音频渲染学会了从任意声音输入中控制可区分的合成层。训练过程涉及一系列音频进行监督和光谱重建损失功能。这样的功能虽然非常适合匹配光谱振幅,但却存在缺乏俯仰方向,这可能会阻碍FM合成器参数的关节优化。在本文中,我们采取了步骤,从音频输入中连续控制良好的FM合成体系结构。首先,我们讨论一组设计约束,通过标准重建损失来简化可区分的FM合成器的光谱优化。接下来,我们介绍可区分的DX7(DDX7),这是一种轻巧的体系结构,可根据一组紧凑的参数来进行乐器声音的神经FM重新合成。我们在从URMP数据集中提取的仪器样品上训练该模型,并定量证明其针对选定基准测试的音频质量可比。
translated by 谷歌翻译
在各种领域,包括搜索和救援,自动驾驶汽车导航和侦察的各个领域,形成不断变化的场景的非线图像(NLOS)图像的能力可能具有变革性。大多数现有的活性NLOS方法使用针对继电器表面并收集回返回光的时间分辨测量的脉冲激光来照亮隐藏场景。流行的方法包括对垂直壁上的矩形网格的栅格扫描,相对于感兴趣的数量,以产生共聚焦测量集合。这些固有地受到激光扫描的需求的限制。避免激光扫描的方法将隐藏场景的运动部件作为一个或两个点目标。在这项工作中,基于更完整的光学响应建模,但仍没有多个照明位置,我们演示了运动中对象的准确重建和背后的固定风景的“地图”。计数,本地化和表征运动中隐藏物体的大小,结合固定隐藏场景的映射的能力,可以大大提高各种应用中的室内情况意识。
translated by 谷歌翻译
有充分的神经生物学证据表明,上下文敏感的新皮质神经元使用其顶端输入来放大相干进料(FF)输入的传播。但是,到目前为止,尚未证明这种已知机制如何提供有用的神经计算。在这里,我们首次展示了这种神经信息处理的处理和学习能力与哺乳动物新皮层的能力相匹配。具体而言,我们表明,由此类本地处理器组成的网络将冲突的信息传输到更高级别,并大大减少处理大量异质现实世界数据所需的活动量,例如在处理视听语音时,这些本地处理器使用这些本地处理器时看到唇部动作可有选择地放大这些动作产生的听觉信息的FF传输,反之亦然。由于这种机制比最佳可用的深神经网的最佳形式更有效率,因此它为理解大脑的神秘能量节能机制提供了逐步改变,并激发了设计增强形式的生物学上的机器学习算法的进步。
translated by 谷歌翻译
自动语音识别(ASR)是新服务的关键元素,可帮助用户与自动化系统进行交互。深度学习方法使得用单词错误率低于5%的英语ASR部署系统成为可能。但是,这些方法的使用仅适用于具有数百或数千小时音频及其相应转录的语言。为了使所谓的低资源语言加快可以改善其ASR系统性能的资源的可用性,正在研究基于现有的资源来创建新资源的方法。在本文中,我们描述了我们的数据增强方法,以改善低资源和凝集性语言的ASR模型的结果。我们使用Wav2letter ++模型进行了为Quechua开发ASR的实验。通过我们的基本模型方法,我们将WER降低了8.73%。由此产生的ASR模型获得了22.75%的WER,并接受了99小时的原始资源和99小时的合成数据的培训,并结合了文本增强和合成语音发电
translated by 谷歌翻译