In robust Markov decision processes (MDPs), the uncertainty in the transition kernel is addressed by finding a policy that optimizes the worst-case performance over an uncertainty set of MDPs. While much of the literature has focused on discounted MDPs, robust average-reward MDPs remain largely unexplored. In this paper, we focus on robust average-reward MDPs, where the goal is to find a policy that optimizes the worst-case average reward over an uncertainty set. We first take an approach that approximates average-reward MDPs using discounted MDPs. We prove that the robust discounted value function converges to the robust average-reward as the discount factor $\gamma$ goes to $1$, and moreover, when $\gamma$ is large, any optimal policy of the robust discounted MDP is also an optimal policy of the robust average-reward. We further design a robust dynamic programming approach, and theoretically characterize its convergence to the optimum. Then, we investigate robust average-reward MDPs directly without using discounted MDPs as an intermediate step. We derive the robust Bellman equation for robust average-reward MDPs, prove that the optimal policy can be derived from its solution, and further design a robust relative value iteration algorithm that provably finds its solution, or equivalently, the optimal robust policy.
translated by 谷歌翻译
对深层分类器的输入以最大化其错误分类速率的添加剂不可察觉的扰动的设计是对抗机器学习的主要重点。另一种方法是使用类似GAN的结构从头开始合成对抗性示例,尽管使用了大量的训练数据。相比之下,本文考虑了对抗性例子的一声合成。从头开始合成输入,以在预训练模型的输出下诱导任意软预测,同时保持与指定输入的高相似性。为此,我们提出了一个问题,该问题在训练有素的模型的所需和输出分布与此类输入与合成示例之间的相似性之间的距离上编码目标。我们证明了配制的问题是NP完整的。然后,我们将一种生成方法推进了解决方案,在该解决方案中,通过优化双重目标的替代损失函数,将对抗性示例作为生成网络的输出进行了迭代更新。我们证明了框架和方法的普遍性和多功能性,该框架和方法是通过应用于目标对抗攻击的设计,决策边界样本的产生以及置信分类低的综合输入的。该方法进一步扩展到具有不同软输出规格的模型集合。实验结果验证了针对最先进的算法以标准剂进行的靶向和置信降低攻击方法。
translated by 谷歌翻译
张量完成是从部分观察到的条目中估算高阶数据缺失值的问题。由于盛行异常值而引起的数据腐败对传统的张量完成算法提出了重大挑战,这促进了减轻异常值效果的强大算法的发展。但是,现有的强大方法在很大程度上假定腐败很少,这可能在实践中可能不存在。在本文中,我们开发了一种两阶段的稳健张量完成方法,以处理张张量的视觉数据,并具有大量的严重损坏。提出了一个新颖的粗到精细框架,该框架使用全局粗完成结果来指导局部贴剂细化过程。为了有效地减轻大量异常值对张量恢复的影响,我们开发了一种新的基于M估计器的稳健张环回收方法,该方法可以自适应地识别异常值并减轻其在优化中的负面影响。实验结果表明,所提出的方法优于最先进的稳定算法以完成张量。
translated by 谷歌翻译
张量完成旨在通过利用其低级别结构来恢复部分观察到的张量的缺失条目,并已应用于视觉数据恢复。在数据依次到达(例如流视频完成)的应用程序中,需要以流式的方式动态恢复张量的缺失条目。传统的流张量完成算法将整个视觉数据视为张量,当沿时间尺寸的张量子空间发生巨大变化时,可能无法令人满意地工作,例如由于视频框架上的强劲运动。在本文中,我们开发了一种基于贴片跟踪的新型流张量张量环完成框架,以进行视觉数据恢复。给定一个新传入的框架,从上一个帧跟踪小补丁。同时,对于每个跟踪的补丁,通过从新框架中堆叠类似的贴片来构建一个补丁张量。然后,使用流张量环完成算法完成补丁张量,并使用完整的补丁张量恢复了传入框架。我们提出了一种新的补丁跟踪策略,可以通过缺少数据准确有效地跟踪补丁程序。此外,提出了一种新的流张量环完成算法,该算法可以有效,准确地更新潜在的核心张量并完成补丁张量的缺失条目。广泛的实验结果表明,与批处理和流媒体最新张量的完成方法相比,所提出的算法的表现出色。
translated by 谷歌翻译
We consider an approach for community detection in time-varying networks. At its core, this approach maintains a small sketch graph to capture the essential community structure found in each snapshot of the full network. We demonstrate how the sketch can be used to explicitly identify six key community events which typically occur during network evolution: growth, shrinkage, merging, splitting, birth and death. Based on these detection techniques, we formulate a community detection algorithm which can process a network concurrently exhibiting all processes. One advantage afforded by the sketch-based algorithm is the efficient handling of large networks. Whereas detecting events in the full graph may be computationally expensive, the small size of the sketch allows changes to be quickly assessed. A second advantage occurs in networks containing clusters of disproportionate size. The sketch is constructed such that there is equal representation of each cluster, thus reducing the possibility that the small clusters are lost in the estimate. We present a new standardized benchmark based on the stochastic block model which models the addition and deletion of nodes, as well as the birth and death of communities. When coupled with existing benchmarks, this new benchmark provides a comprehensive suite of tests encompassing all six community events. We provide analysis and a set of numerical results demonstrating the advantages of our approach both in run time and in the handling of small clusters.
translated by 谷歌翻译
This article explores and analyzes the unsupervised clustering of large partially observed graphs. We propose a scalable and provable randomized framework for clustering graphs generated from the stochastic block model. The clustering is first applied to a sub-matrix of the graph's adjacency matrix associated with a reduced graph sketch constructed using random sampling. Then, the clusters of the full graph are inferred based on the clusters extracted from the sketch using a correlation-based retrieval step. Uniform random node sampling is shown to improve the computational complexity over clustering of the full graph when the cluster sizes are balanced. A new random degree-based node sampling algorithm is presented which significantly improves upon the performance of the clustering algorithm even when clusters are unbalanced. This framework improves the phase transitions for matrix-decomposition-based clustering with regard to computational complexity and minimum cluster size, which are shown to be nearly dimension-free in the low inter-cluster connectivity regime. A third sampling technique is shown to improve balance by randomly sampling nodes based on spatial distribution. We provide analysis and numerical results using a convex clustering algorithm based on matrix completion.
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
In large-scale machine learning, recent works have studied the effects of compressing gradients in stochastic optimization in order to alleviate the communication bottleneck. These works have collectively revealed that stochastic gradient descent (SGD) is robust to structured perturbations such as quantization, sparsification, and delays. Perhaps surprisingly, despite the surge of interest in large-scale, multi-agent reinforcement learning, almost nothing is known about the analogous question: Are common reinforcement learning (RL) algorithms also robust to similar perturbations? In this paper, we investigate this question by studying a variant of the classical temporal difference (TD) learning algorithm with a perturbed update direction, where a general compression operator is used to model the perturbation. Our main technical contribution is to show that compressed TD algorithms, coupled with an error-feedback mechanism used widely in optimization, exhibit the same non-asymptotic theoretical guarantees as their SGD counterparts. We then extend our results significantly to nonlinear stochastic approximation algorithms and multi-agent settings. In particular, we prove that for multi-agent TD learning, one can achieve linear convergence speedups in the number of agents while communicating just $\tilde{O}(1)$ bits per agent at each time step. Our work is the first to provide finite-time results in RL that account for general compression operators and error-feedback in tandem with linear function approximation and Markovian sampling. Our analysis hinges on studying the drift of a novel Lyapunov function that captures the dynamics of a memory variable introduced by error feedback.
translated by 谷歌翻译
The automated segmentation and tracking of macrophages during their migration are challenging tasks due to their dynamically changing shapes and motions. This paper proposes a new algorithm to achieve automatic cell tracking in time-lapse microscopy macrophage data. First, we design a segmentation method employing space-time filtering, local Otsu's thresholding, and the SUBSURF (subjective surface segmentation) method. Next, the partial trajectories for cells overlapping in the temporal direction are extracted in the segmented images. Finally, the extracted trajectories are linked by considering their direction of movement. The segmented images and the obtained trajectories from the proposed method are compared with those of the semi-automatic segmentation and manual tracking. The proposed tracking achieved 97.4% of accuracy for macrophage data under challenging situations, feeble fluorescent intensity, irregular shapes, and motion of macrophages. We expect that the automatically extracted trajectories of macrophages can provide pieces of evidence of how macrophages migrate depending on their polarization modes in the situation, such as during wound healing.
translated by 谷歌翻译