许多视觉现象表明,人类使用自上而下的生成或重建过程来创建视觉感知(例如,图像,对象完成,pareidolia),但对重建在强大的对象识别中的作用鲜为人知。我们构建了一个迭代编码器网络,该网络生成对象重建,并将其用作自上而下的注意力反馈,以将最相关的空间和功能信息路由馈送到前向对象识别过程。我们使用具有挑战性的分布数字识别数据集MNIST-C测试了该模型,其中将15种不同类型的转换和损坏应用于手写数字图像。我们的模型对各种图像扰动表现出强烈的概括性能,平均表现所有其他模型,包括前馈CNN和受对抗训练的网络。我们的模型对于模糊,噪音和遮挡腐败特别强大,在这种情况下,形状感知起着重要作用。消融研究进一步揭示了在强大的物体识别中基于空间和特征注意的两个互补作用,前者在很大程度上与注意文献中的空间掩盖益处一致(重建是掩膜),后者主要促进该模型的推理速度的速度。 (即,达到一定置信阈值的时间步骤的数量)通过减少可能的对象假设的空间。我们还观察到该模型有时会从噪声中幻觉,从而导致高度可解释的人类误差。我们的研究表明,基于重建的反馈建模赋予AI系统具有强大的注意机制,这可以帮助我们了解产生感知在人类视觉处理中的作用。
translated by 谷歌翻译
人类凝视行为的预测对于构建可以预见用户注意力的人类计算机交互式系统很重要。已经开发了计算机视觉模型,以预测人们在寻找目标对象时进行的固定。但是,何时没有目标呢?同样重要的是要知道人们在找不到目标时如何搜索以及何时停止搜索。在本文中,我们提出了第一个以数据驱动的计算模型来解决搜索终止问题,并预测了搜索未出现在图像中的目标的人进行的搜索固定的扫描路径。我们将视觉搜索建模为模仿学习问题,并代表观众通过使用新颖的状态表示来获取的内部知识,我们称之为foveated特征映射(FFMS)。 FFMS将模拟的散发性视网膜集成到预处理的Convnet中,该转向网络产生网络内功能金字塔,所有这些都具有最小的计算开销。我们的方法将FFMS作为逆增强学习中的状态表示。在实验上,我们在预测可可搜索数据集上的人类目标搜索行为方面提高了最新技术的状态
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
In recent years several learning approaches to point goal navigation in previously unseen environments have been proposed. They vary in the representations of the environments, problem decomposition, and experimental evaluation. In this work, we compare the state-of-the-art Deep Reinforcement Learning based approaches with Partially Observable Markov Decision Process (POMDP) formulation of the point goal navigation problem. We adapt the (POMDP) sub-goal framework proposed by [1] and modify the component that estimates frontier properties by using partial semantic maps of indoor scenes built from images' semantic segmentation. In addition to the well-known completeness of the model-based approach, we demonstrate that it is robust and efficient in that it leverages informative, learned properties of the frontiers compared to an optimistic frontier-based planner. We also demonstrate its data efficiency compared to the end-to-end deep reinforcement learning approaches. We compare our results against an optimistic planner, ANS and DD-PPO on Matterport3D dataset using the Habitat Simulator. We show comparable, though slightly worse performance than the SOTA DD-PPO approach, yet with far fewer data.
translated by 谷歌翻译
It is known that neural networks have the problem of being over-confident when directly using the output label distribution to generate uncertainty measures. Existing methods mainly resolve this issue by retraining the entire model to impose the uncertainty quantification capability so that the learned model can achieve desired performance in accuracy and uncertainty prediction simultaneously. However, training the model from scratch is computationally expensive and may not be feasible in many situations. In this work, we consider a more practical post-hoc uncertainty learning setting, where a well-trained base model is given, and we focus on the uncertainty quantification task at the second stage of training. We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities, which is effective and computationally efficient. Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties and easily adapt to different application settings, including out-of-domain data detection, misclassification detection, and trustworthy transfer learning. We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications over multiple representative image classification benchmarks.
translated by 谷歌翻译
Convolutional neural networks (CNNs) are currently among the most widely-used neural networks available and achieve state-of-the-art performance for many problems. While originally applied to computer vision tasks, CNNs work well with any data with a spatial relationship, besides images, and have been applied to different fields. However, recent works have highlighted how CNNs, like other deep learning models, are sensitive to noise injection which can jeopardise their performance. This paper quantifies the numerical uncertainty of the floating point arithmetic inaccuracies of the inference stage of DeepGOPlus, a CNN that predicts protein function, in order to determine its numerical stability. In addition, this paper investigates the possibility to use reduced-precision floating point formats for DeepGOPlus inference to reduce memory consumption and latency. This is achieved with Monte Carlo Arithmetic, a technique that experimentally quantifies floating point operation errors and VPREC, a tool that emulates results with customizable floating point precision formats. Focus is placed on the inference stage as it is the main deliverable of the DeepGOPlus model that will be used across environments and therefore most likely be subjected to the most amount of noise. Furthermore, studies have shown that the inference stage is the part of the model which is most disposed to being scaled down in terms of reduced precision. All in all, it has been found that the numerical uncertainty of the DeepGOPlus CNN is very low at its current numerical precision format, but the model cannot currently be reduced to a lower precision that might render it more lightweight.
translated by 谷歌翻译
With water quality management processes, identifying and interpreting relationships between features, such as location and weather variable tuples, and water quality variables, such as levels of bacteria, is key to gaining insights and identifying areas where interventions should be made. There is a need for a search process to identify the locations and types of phenomena that are influencing water quality and a need to explain why the quality is being affected and which factors are most relevant. This paper addresses both of these issues through the development of a process for collecting data for features that represent a variety of variables over a spatial region, which are used for training and inference, and analysing the performance of the features using the model and Shapley values. Shapley values originated in cooperative game theory and can be used to aid in the interpretation of machine learning results. Evaluations are performed using several machine learning algorithms and water quality data from the Dublin Grand Canal basin.
translated by 谷歌翻译
Oxidation states are the charges of atoms after their ionic approximation of their bonds, which have been widely used in charge-neutrality verification, crystal structure determination, and reaction estimation. Currently only heuristic rules exist for guessing the oxidation states of a given compound with many exceptions. Recent work has developed machine learning models based on heuristic structural features for predicting the oxidation states of metal ions. However, composition based oxidation state prediction still remains elusive so far, which is more important in new material discovery for which the structures are not even available. This work proposes a novel deep learning based BERT transformer language model BERTOS for predicting the oxidation states of all elements of inorganic compounds given only their chemical composition. Our model achieves 96.82\% accuracy for all-element oxidation states prediction benchmarked on the cleaned ICSD dataset and achieves 97.61\% accuracy for oxide materials. We also demonstrate how it can be used to conduct large-scale screening of hypothetical material compositions for materials discovery.
translated by 谷歌翻译
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objective and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
translated by 谷歌翻译