人类凝视行为的预测对于构建可以预见用户注意力的人类计算机交互式系统很重要。已经开发了计算机视觉模型,以预测人们在寻找目标对象时进行的固定。但是,何时没有目标呢?同样重要的是要知道人们在找不到目标时如何搜索以及何时停止搜索。在本文中,我们提出了第一个以数据驱动的计算模型来解决搜索终止问题,并预测了搜索未出现在图像中的目标的人进行的搜索固定的扫描路径。我们将视觉搜索建模为模仿学习问题,并代表观众通过使用新颖的状态表示来获取的内部知识,我们称之为foveated特征映射(FFMS)。 FFMS将模拟的散发性视网膜集成到预处理的Convnet中,该转向网络产生网络内功能金字塔,所有这些都具有最小的计算开销。我们的方法将FFMS作为逆增强学习中的状态表示。在实验上,我们在预测可可搜索数据集上的人类目标搜索行为方面提高了最新技术的状态
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
在本文中,我们提出了一个新颖的端到端集团协作学习网络,称为GCONET+,该网络可以有效,有效地(250 fps)识别自然场景中的共呈含量对象。提出的GCONET+基于以下两个基本标准,通过采矿共识表示,实现了共同降低对象检测(COSOD)的新最新性能:1)组内紧凑型,以更好地提高共同空位之间的一致性通过使用我们的新颖组亲和力模块(GAM)捕获其固有共享属性的对象; 2)组间可分离性通过引入我们的新组协作模块(GCM)条件对不一致的共识进行调理,从而有效抑制嘈杂对象对输出的影响。为了进一步提高准确性,我们设计了一系列简单但有效的组件,如下所示:i)在语义级别促进模型学习的经常性辅助分类模块(RACM); ii)一个置信度增强模块(CEM)帮助模型提高最终预测的质量; iii)基于小组的对称三重态(GST)损失指导模型以学习更多的判别特征。对三个具有挑战性的基准测试(即可口可乐,COSOD3K和COSAL2015)进行了广泛的实验,这表明我们的GCONET+优于现有的12个尖端模型。代码已在https://github.com/zhengpeng7/gconet_plus上发布。
translated by 谷歌翻译
Single-frame InfraRed Small Target (SIRST) detection has been a challenging task due to a lack of inherent characteristics, imprecise bounding box regression, a scarcity of real-world datasets, and sensitive localization evaluation. In this paper, we propose a comprehensive solution to these challenges. First, we find that the existing anchor-free label assignment method is prone to mislabeling small targets as background, leading to their omission by detectors. To overcome this issue, we propose an all-scale pseudo-box-based label assignment scheme that relaxes the constraints on scale and decouples the spatial assignment from the size of the ground-truth target. Second, motivated by the structured prior of feature pyramids, we introduce the one-stage cascade refinement network (OSCAR), which uses the high-level head as soft proposals for the low-level refinement head. This allows OSCAR to process the same target in a cascade coarse-to-fine manner. Finally, we present a new research benchmark for infrared small target detection, consisting of the SIRST-V2 dataset of real-world, high-resolution single-frame targets, the normalized contrast evaluation metric, and the DeepInfrared toolkit for detection. We conduct extensive ablation studies to evaluate the components of OSCAR and compare its performance to state-of-the-art model-driven and data-driven methods on the SIRST-V2 benchmark. Our results demonstrate that a top-down cascade refinement framework can improve the accuracy of infrared small target detection without sacrificing efficiency. The DeepInfrared toolkit, dataset, and trained models are available at https://github.com/YimianDai/open-deepinfrared to advance further research in this field.
translated by 谷歌翻译
显着对象检测(SOD)最近引起了人们的关注,但对高分辨率(HR)图像的研究较少。不幸的是,与低分辨率(LR)图像和注释相比,HR图像及其像素级注释肯定是更耗费劳动力和耗时的。因此,我们建议没有任何HR数据集的HR预测,建议基于图像金字塔的SOD框架,逆显着性金字塔重建网络(INSPYRENET)。我们设计了Inspyrenet,以产生严格的图像金字塔结构,使其能够将多个结果与基于金字塔的图像混合在一起。为了进行HR预测,我们设计了一种金字塔混合方法,该方法从同一图像中从一对LR和HR量表中合成了两个不同的图像金字塔,以克服有效的接受场(ERF)差异。我们对公共LR和HR SOD基准的广泛评估表明,Inspyrenet超过了各种SOD指标和边界准确性的最新方法(SOTA)方法。
translated by 谷歌翻译
Panoptic semonation涉及联合语义分割和实例分割的组合,其中图像内容分为两种类型:事物和东西。我们展示了Panoptic SegFormer,是与变压器的Panoptic Semonation的一般框架。它包含三个创新组件:高效的深度监督掩模解码器,查询解耦策略以及改进的后处理方法。我们还使用可变形的DETR来有效地处理多尺度功能,这是一种快速高效的DETR版本。具体而言,我们以层式方式监督掩模解码器中的注意模块。这种深度监督策略让注意模块快速关注有意义的语义区域。与可变形的DETR相比,它可以提高性能并将所需培训纪元的数量减少一半。我们的查询解耦策略对查询集的职责解耦并避免了事物和东西之间的相互干扰。此外,我们的后处理策略通过联合考虑分类和分割质量来解决突出的面具重叠而没有额外成本的情况。我们的方法会在基线DETR模型上增加6.2 \%PQ。 Panoptic SegFormer通过56.2 \%PQ实现最先进的结果。它还显示出对现有方法的更强大的零射鲁布利。代码释放\ url {https://github.com/zhiqi-li/panoptic-segformer}。
translated by 谷歌翻译
场景分类已确定为一个具有挑战性的研究问题。与单个对象的图像相比,场景图像在语义上可能更为复杂和抽象。它们的差异主要在于识别的粒度水平。然而,图像识别是场景识别良好表现的关键支柱,因为从对象图像中获得的知识可用于准确识别场景。现有场景识别方法仅考虑场景的类别标签。但是,我们发现包含详细的本地描述的上下文信息也有助于允许场景识别模型更具歧视性。在本文中,我们旨在使用对象中编码的属性和类别标签信息来改善场景识别。基于属性和类别标签的互补性,我们提出了一个多任务属性识别识别(MASR)网络,该网络学习一个类别嵌入式,同时预测场景属性。属性采集和对象注释是乏味且耗时的任务。我们通过提出部分监督的注释策略来解决该问题,其中人类干预大大减少。该策略为现实世界情景提供了更具成本效益的解决方案,并且需要减少注释工作。此外,考虑到对象检测到的分数所指示的重要性水平,我们重新进行了权威预测。使用提出的方法,我们有效地注释了四个大型数据集的属性标签,并系统地研究场景和属性识别如何相互受益。实验结果表明,与最先进的方法相比
translated by 谷歌翻译
本文介绍了Houghnet,这是一种单阶段,无锚,基于投票的,自下而上的对象检测方法。受到广义的霍夫变换的启发,霍尼特通过在该位置投票的总和确定了某个位置的物体的存在。投票是根据对数极极投票领域的近距离和长距离地点收集的。由于这种投票机制,Houghnet能够整合近距离和远程的班级条件证据以进行视觉识别,从而概括和增强当前的对象检测方法,这通常仅依赖于本地证据。在可可数据集中,Houghnet的最佳型号达到$ 46.4 $ $ $ ap $(和$ 65.1 $ $ $ ap_ {50} $),与自下而上的对象检测中的最先进的作品相同,超越了最重要的一项 - 阶段和两阶段方法。我们进一步验证了提案在其他视觉检测任务中的有效性,即视频对象检测,实例分割,3D对象检测和人为姿势估计的关键点检测以及其他“图像”图像生成任务的附加“标签”,其中集成的集成在所有情况下,我们的投票模块始终提高性能。代码可在https://github.com/nerminsamet/houghnet上找到。
translated by 谷歌翻译
为了使用各种类型的数据理解现实世界,人工智能(AI)是当今最常用的技术。在分析数据中找到模式的同时表示主要任务。这是通过提取代表性特征步骤来执行的,该步骤是使用统计算法或使用某些特定过滤器进行的。但是,从大规模数据中选择有用的功能代表了至关重要的挑战。现在,随着卷积神经网络(CNN)的发展,功能提取操作变得更加自动和更容易。 CNN允许处理大规模的数据,并涵盖特定任务的不同方案。对于计算机视觉任务,卷积网络也用于为深度学习模型的其他部分提取功能。选择合适的网络用于特征提取或DL模型的其他部分不是随机工作。因此,这种模型的实现可能与目标任务以及其计算复杂性有关。已经提出了许多网络,并成为任何AI任务中任何DL模型的著名网络。这些网络被利用用于特征提取或在任何名为骨架的DL模型的开头。骨干是以前在许多其他任务中训练并证明其有效性的已知网络。在本文中,现有骨干的概述,例如详细说明给出了VGG,Resnets,Densenet等。此外,通过对所使用的骨干进行审查,讨论了几个计算机视觉任务。此外,还基于每个任务的骨干,还提供了性能的比较。
translated by 谷歌翻译
我们提出了统一的显着性和扫描路径模型(UMSS) - 一个模型,用于预测信息性能的视觉显着和扫描路径(即眼固定序列)。虽然扫描路径提供有关视觉探索过程中不同可视化元素的重要性的丰富信息,但是有限的工作仅限于预测聚合的注意力统计,例如视觉显着性。我们对流行的Massvis DataSet上的不同信息可视化元素(例如标题,标题,数据)进行了深入的凝视行为。我们表明,虽然整体而言,凝视图案令人惊讶地在可视化和观众方面一致,但不同元素的凝视动力学也存在结构差异。通过我们的分析来了解,UMSS首先预测多持续元素级显着映射,然后是概率地样本来自它们的扫描路径。对Massvis的广泛实验表明,我们的方法始终如一地优于若干,广泛使用的扫描路径和显着性评估度量的最先进的方法。我们的方法在扫描路径预测的序列得分为11.5%的相对改善,并且Pearson相关系数的显着性预测高达23.6%的相对提高。这些结果是令人愉快的,并指向更丰富的用户模型和对视觉关注的模拟,无需任何眼睛跟踪设备。
translated by 谷歌翻译
我们提出了一种用于多实例姿态估计的端到端培训方法,称为诗人(姿势估计变压器)。将卷积神经网络与变压器编码器 - 解码器架构组合,我们将多个姿势估计从图像标记为直接设置预测问题。我们的模型能够使用双方匹配方案直接出现所有个人的姿势。诗人使用基于集的全局损失进行培训,该丢失包括关键点损耗,可见性损失和载重损失。诗歌的原因与多个检测到的个人与完整图像上下文之间的关系直接预测它们并行姿势。我们展示诗人在Coco Keypoint检测任务上实现了高精度,同时具有比其他自下而上和自上而下的方法更少的参数和更高推理速度。此外,在将诗人应用于动物姿势估计时,我们表现出了成功的转移学习。据我们所知,该模型是第一个端到端的培训多实例姿态估计方法,我们希望它将成为一种简单而有前途的替代方案。
translated by 谷歌翻译
我们提出了聚类蒙版变压器(CMT-DeepLab),这是一种基于变压器的框架,用于围绕聚类设计的泛型分割。它重新考虑了用于分割和检测的现有变压器架构;CMT-DeepLab认为对象查询是群集中心,该中心填充了应用于分割时将像素分组的作用。群集通过交替的过程计算,首先通过其功能亲和力将像素分配给簇,然后更新集群中心和像素功能。这些操作共同包含聚类蒙版变压器(CMT)层,该层产生了越野器的交叉注意,并且与最终的分割任务更加一致。CMT-DeepLab在可可Test-DEV集中实现了55.7%的PQ的新最先进的PQ,可显着提高先前ART的性能。
translated by 谷歌翻译
Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A topdown architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art singlemodel results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.
translated by 谷歌翻译
We present a new, embarrassingly simple approach to instance segmentation. Compared to many other dense prediction tasks, e.g., semantic segmentation, it is the arbitrary number of instances that have made instance segmentation much more challenging. In order to predict a mask for each instance, mainstream approaches either follow the "detect-then-segment" strategy (e.g., Mask R-CNN), or predict embedding vectors first then use clustering techniques to group pixels into individual instances. We view the task of instance segmentation from a completely new perspective by introducing the notion of "instance categories", which assigns categories to each pixel within an instance according to the instance's location and size, thus nicely converting instance segmentation into a single-shot classification-solvable problem. We demonstrate a much simpler and flexible instance segmentation framework with strong performance, achieving on par accuracy with Mask R-CNN and outperforming recent single-shot instance segmenters in accuracy. We hope that this simple and strong framework can serve as a baseline for many instance-level recognition tasks besides instance segmentation. Code is available at https://git.io/AdelaiDet
translated by 谷歌翻译
We solve the problem of salient object detection by investigating how to expand the role of pooling in convolutional neural networks. Based on the U-shape architecture, we first build a global guidance module (GGM) upon the bottom-up pathway, aiming at providing layers at different feature levels the location information of potential salient objects. We further design a feature aggregation module (FAM) to make the coarse-level semantic information well fused with the fine-level features from the top-down pathway. By adding FAMs after the fusion operations in the topdown pathway, coarse-level features from the GGM can be seamlessly merged with features at various scales. These two pooling-based modules allow the high-level semantic features to be progressively refined, yielding detail enriched saliency maps. Experiment results show that our proposed approach can more accurately locate the salient objects with sharpened details and hence substantially improve the performance compared to the previous state-of-the-arts. Our approach is fast as well and can run at a speed of more than 30 FPS when processing a 300 × 400 image. Code can be found at http://mmcheng.net/poolnet/.
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
大多数最先进的实例级人类解析模型都采用了两阶段的基于锚的探测器,因此无法避免启发式锚盒设计和像素级别缺乏分析。为了解决这两个问题,我们设计了一个实例级人类解析网络,该网络在像素级别上无锚固且可解决。它由两个简单的子网络组成:一个用于边界框预测的无锚检测头和一个用于人体分割的边缘引导解析头。无锚探测器的头继承了像素样的优点,并有效地避免了对象检测应用中证明的超参数的敏感性。通过引入部分感知的边界线索,边缘引导的解析头能够将相邻的人类部分与彼此区分开,最多可在一个人类实例中,甚至重叠的实例。同时,利用了精炼的头部整合盒子级别的分数和部分分析质量,以提高解析结果的质量。在两个多个人类解析数据集(即CIHP和LV-MHP-V2.0)和一个视频实例级人类解析数据集(即VIP)上进行实验,表明我们的方法实现了超过全球级别和实例级别的性能最新的一阶段自上而下的替代方案。
translated by 谷歌翻译
物体检测通常需要在现代深度学习方法中基于传统或锚盒的滑动窗口分类器。但是,这些方法中的任何一个都需要框中的繁琐配置。在本文中,我们提供了一种新的透视图,其中检测对象被激励为高电平语义特征检测任务。与边缘,角落,斑点和其他特征探测器一样,所提出的探测器扫描到全部图像的特征点,卷积自然适合该特征点。但是,与这些传统的低级功能不同,所提出的探测器用于更高级别的抽象,即我们正在寻找有物体的中心点,而现代深层模型已经能够具有如此高级别的语义抽象。除了Blob检测之外,我们还预测了中心点的尺度,这也是直接的卷积。因此,在本文中,通过卷积简化了行人和面部检测作为直接的中心和规模预测任务。这样,所提出的方法享有一个无盒设置。虽然结构简单,但它对几个具有挑战性的基准呈现竞争准确性,包括行人检测和面部检测。此外,执行交叉数据集评估,证明所提出的方法的卓越泛化能力。可以访问代码和模型(https://github.com/liuwei16/csp和https://github.com/hasanirtiza/pedestron)。
translated by 谷歌翻译
转移学习可以在源任务上重新使用知识来帮助学习目标任务。一种简单的转移学习形式在当前的最先进的计算机视觉模型中是常见的,即预先训练ILSVRC数据集上的图像分类模型,然后在任何目标任务上进行微调。然而,先前对转移学习的系统研究已经有限,并且预计工作的情况并不完全明白。在本文中,我们对跨越不同的图像域进行了广泛的转移学习实验探索(消费者照片,自主驾驶,空中图像,水下,室内场景,合成,特写镜头)和任务类型(语义分割,物体检测,深度估计,关键点检测)。重要的是,这些都是与现代计算机视觉应用相关的复杂的结构化的输出任务类型。总共执行超过2000年的转移学习实验,包括许多来源和目标来自不同的图像域,任务类型或两者。我们系统地分析了这些实验,了解图像域,任务类型和数据集大小对传输学习性能的影响。我们的研究导致了几个见解和具体建议:(1)对于大多数任务,存在一个显着优于ILSVRC'12预培训的来源; (2)图像领域是实现阳性转移的最重要因素; (3)源数据集应该\ \ emph {include}目标数据集的图像域以获得最佳结果; (4)与此同时,当源任务的图像域比目标的图像域时,我们只观察小的负面影响; (5)跨任务类型的转移可能是有益的,但其成功严重依赖于源和目标任务类型。
translated by 谷歌翻译