In this paper, we propose a new short-term load forecasting (STLF) model based on contextually enhanced hybrid and hierarchical architecture combining exponential smoothing (ES) and a recurrent neural network (RNN). The model is composed of two simultaneously trained tracks: the context track and the main track. The context track introduces additional information to the main track. It is extracted from representative series and dynamically modulated to adjust to the individual series forecasted by the main track. The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive dilated recurrent cells. These cells enable the model to capture short-term, long-term and seasonal dependencies across time series as well as to weight dynamically the input information. The model produces both point forecasts and predictive intervals. The experimental part of the work performed on 35 forecasting problems shows that the proposed model outperforms in terms of accuracy its predecessor as well as standard statistical models and state-of-the-art machine learning models.
translated by 谷歌翻译
短期负荷预测(STLF)由于复杂的时间序列(TS)是一种表达三个季节性模式和非线性趋势的挑战。本文提出了一种新的混合分层深度学习模型,涉及多个季节性,并产生两点预测和预测间隔(PIS)。它结合了指数平滑(ES)和经常性神经网络(RNN)。 ES动态提取每个单独的TS的主要组件,并启用在飞行的临时化,这在相对较小的数据集上操作时特别有用。多层RNN配备了一种新型扩张的经常性电池,旨在有效地模拟TS中的短期和长期依赖性。为了改善内部TS表示,因此模型的性能,RNN同时学习ES参数和主要映射函数将输入转换为预测。我们比较我们对几种基线方法的方法,包括古典统计方法和机器学习(ML)方法,在35个欧洲国家的STLF问题。实证研究清楚地表明,该模型具有高表现力,以解决非线性随机预测问题,包括多个季节性和显着的随机波动。实际上,它在准确性方面优于统计和最先进的ML模型。
translated by 谷歌翻译
The outbreak of the SARS-CoV-2 pandemic has put healthcare systems worldwide to their limits, resulting in increased waiting time for diagnosis and required medical assistance. With chest radiographs (CXR) being one of the most common COVID-19 diagnosis methods, many artificial intelligence tools for image-based COVID-19 detection have been developed, often trained on a small number of images from COVID-19-positive patients. Thus, the need for high-quality and well-annotated CXR image databases increased. This paper introduces POLCOVID dataset, containing chest X-ray (CXR) images of patients with COVID-19 or other-type pneumonia, and healthy individuals gathered from 15 Polish hospitals. The original radiographs are accompanied by the preprocessed images limited to the lung area and the corresponding lung masks obtained with the segmentation model. Moreover, the manually created lung masks are provided for a part of POLCOVID dataset and the other four publicly available CXR image collections. POLCOVID dataset can help in pneumonia or COVID-19 diagnosis, while the set of matched images and lung masks may serve for the development of lung segmentation solutions.
translated by 谷歌翻译
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objective and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
translated by 谷歌翻译
This paper presents a robust end-to-end method for sports cameras extrinsic parameters optimization using a novel evolution strategy. First, we developed a neural network architecture for an edge or area-based segmentation of a sports field. Secondly, we implemented the evolution strategy, which purpose is to refine extrinsic camera parameters given a single, segmented sports field image. Experimental comparison with state-of-the-art camera pose refinement methods on real-world data demonstrates the superiority of the proposed algorithm. We also perform an ablation study and propose a way to generalize the method to additionally refine the intrinsic camera matrix.
translated by 谷歌翻译
The paper presents a multi-camera tracking method intended for tracking soccer players in long shot video recordings from multiple calibrated cameras installed around the playing field. The large distance to the camera makes it difficult to visually distinguish individual players, which adversely affects the performance of traditional solutions relying on the appearance of tracked objects. Our method focuses on individual player dynamics and interactions between neighborhood players to improve tracking performance. To overcome the difficulty of reliably merging detections from multiple cameras in the presence of calibration errors, we propose the novel tracking approach, where the tracker operates directly on raw detection heat maps from multiple cameras. Our model is trained on a large synthetic dataset generated using Google Research Football Environment and fine-tuned using real-world data to reduce costs involved with ground truth preparation.
translated by 谷歌翻译
生成模型生成的合成数据可以增强医学成像中渴望数据深度学习模型的性能和能力。但是,(1)(合成)数据集的可用性有限,并且(2)生成模型训练很复杂,这阻碍了它们在研究和临床应用中的采用。为了减少此入口障碍,我们提出了Medigan,Medigan是一站式商店,用于验证的生成型号,该型号是开源框架 - 不合骨python图书馆。 Medigan允许研究人员和开发人员仅在几行代码中创建,增加和域名。在基于收集的最终用户需求的设计决策的指导下,我们基于生成模型的模块化组件(i)执行,(ii)可视化,(iii)搜索和排名以及(iv)贡献。图书馆的可伸缩性和设计是通过其越来越多的综合且易于使用的验证生成模型来证明的,该模型由21种模型组成,利用9种不同的生成对抗网络体系结构在4个域中在11个数据集中训练,即乳腺摄影,内窥镜检查,X射线和X射线和X射线镜头,X射线和X型。 MRI。此外,在这项工作中分析了Medigan的3个应用,其中包括(a)启用社区范围内的限制数据共享,(b)研究生成模型评估指标以及(c)改进临床下游任务。在(b)中,扩展了公共医学图像综合评估和报告标准,我们根据图像归一化和特定于放射学特征提取了Fr \'Echet Inception距离变异性。
translated by 谷歌翻译
在现实世界中存在的各种田间条件下,通常会挑战准确的作物行检测。传统的基于颜色的细分无法满足所有此类变化。在农业环境中缺乏全面的数据集限制了研究人员开发强大的分割模型来检测作物行。我们提出了一个用于作物行检测的数据集,其中有11种与甜菜和玉米作物的田间变化。我们还提出了一种新型的作物行检测算法,用于在作物行场中进行视觉伺服。我们的算法可以在不同的田间条件下检测作物行,例如弯曲的作物行,杂草的存在,不连续性,生长阶段,具无金,阴影和光水平。我们的方法仅使用来自沙哑的机器人上正式摄像头的RGB图像来预测作物行。我们的方法表现优于经典的基于颜色的作物行检测基线。在农作物行检测算法的最具挑战性的田间条件下,杂草之间存在茂密的杂草,而作物行中的不连续性是最具挑战性的田间条件。我们的方法可以检测到作物行的末端,并在到达农作物行的末端时将机器人驶向岬角区域。
translated by 谷歌翻译
植物是动态生物。对于野外所有机器人来说,了解植被的时间变化是一个必不可少的问题。但是,在时间上关联重复的3D植物扫描是具有挑战性的。此过程中的关键步骤是随着时间的推移重新识别和跟踪相同的单个植物组件。以前,这是通过比较其全球空间或拓扑位置来实现的。在这项工作中,我们演示了使用形状功能如何改善颞器官匹配。我们提出了一种无里程碑的形状压缩算法,该算法允许提取叶子的3D形状特征,在少数参数中有效地表征叶片形状和曲率,并使特征空间中各个叶子的关联成为可能。该方法使用主成分分析(PCA)结合了3D轮廓提取和进一步的压缩,以产生形状空间编码,这完全是从数据中学到的,并保留有关边缘轮廓和3D曲率的信息。我们对番茄植物的时间扫描序列的评估表明,结合形状特征可改善颞叶匹配。形状,位置和旋转信息的结合证明了最有用的信息,可以随着时间的推移识别叶子,并产生75%的真正正率,对固定方法提高了15%。这对于机器人作物监测至关重要,这可以实现全面的表型。
translated by 谷歌翻译
农业环境中的自主导航通常受到可能在耕地中可能出现的不同田间条件的挑战。在这些农业环境中自动导航的最新解决方案将需要昂贵的硬件,例如RTK-GPS。本文提出了一种强大的作物排检测算法,该算法可以承受这些变化,同时检测作物行进行视觉伺服。创建了一个糖图像的数据集,其中有43个组合在可耕地中发现的11个田间变化。新型的作物行检测算法既经过作物行检测性能,又要测试沿农作系的视觉伺服伺服的能力。该算法仅使用RGB图像作为输入,并且使用卷积神经网络来预测作物行面罩。我们的算法优于基线方法,该方法使用基于颜色的分割来实现场变化的所有组合。我们使用一个组合性能指标,该指标解释了作物行检测的角度和位移误差。我们的算法在作物的早期生长阶段表现出最差的表现。
translated by 谷歌翻译