生成模型生成的合成数据可以增强医学成像中渴望数据深度学习模型的性能和能力。但是,(1)(合成)数据集的可用性有限,并且(2)生成模型训练很复杂,这阻碍了它们在研究和临床应用中的采用。为了减少此入口障碍,我们提出了Medigan,Medigan是一站式商店,用于验证的生成型号,该型号是开源框架 - 不合骨python图书馆。 Medigan允许研究人员和开发人员仅在几行代码中创建,增加和域名。在基于收集的最终用户需求的设计决策的指导下,我们基于生成模型的模块化组件(i)执行,(ii)可视化,(iii)搜索和排名以及(iv)贡献。图书馆的可伸缩性和设计是通过其越来越多的综合且易于使用的验证生成模型来证明的,该模型由21种模型组成,利用9种不同的生成对抗网络体系结构在4个域中在11个数据集中训练,即乳腺摄影,内窥镜检查,X射线和X射线和X射线镜头,X射线和X型。 MRI。此外,在这项工作中分析了Medigan的3个应用,其中包括(a)启用社区范围内的限制数据共享,(b)研究生成模型评估指标以及(c)改进临床下游任务。在(b)中,扩展了公共医学图像综合评估和报告标准,我们根据图像归一化和特定于放射学特征提取了Fr \'Echet Inception距离变异性。
translated by 谷歌翻译
Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning.
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
深度神经网络在人类分析中已经普遍存在,增强了应用的性能,例如生物识别识别,动作识别以及人重新识别。但是,此类网络的性能通过可用的培训数据缩放。在人类分析中,对大规模数据集的需求构成了严重的挑战,因为数据收集乏味,廉价,昂贵,并且必须遵守数据保护法。当前的研究研究了\ textit {合成数据}的生成,作为在现场收集真实数据的有效且具有隐私性的替代方案。这项调查介绍了基本定义和方法,在生成和采用合成数据进行人类分析时必不可少。我们进行了一项调查,总结了当前的最新方法以及使用合成数据的主要好处。我们还提供了公开可用的合成数据集和生成模型的概述。最后,我们讨论了该领域的局限性以及开放研究问题。这项调查旨在为人类分析领域的研究人员和从业人员提供。
translated by 谷歌翻译
数据质量是发展医疗保健中值得信赖的AI的关键因素。大量具有控制混杂因素的策划数据集可以帮助提高下游AI算法的准确性,鲁棒性和隐私性。但是,访问高质量的数据集受数据获取的技术难度的限制,并且严格的道德限制阻碍了医疗保健数据的大规模共享。数据合成算法生成具有与真实临床数据相似的分布的数据,可以作为解决可信度AI的发展过程中缺乏优质数据的潜在解决方案。然而,最新的数据合成算法,尤其是深度学习算法,更多地集中于成像数据,同时忽略了非成像医疗保健数据的综合,包括临床测量,医疗信号和波形以及电子保健记录(EHRS)(EHRS) 。因此,在本文中,我们将回顾合成算法,尤其是对于非成像医学数据,目的是在该领域提供可信赖的AI。本教程风格的审查论文将对包括算法,评估,局限性和未来研究方向在内的各个方面进行全面描述。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
数据已成为当今世界上最有价值的资源。随着数据驱动算法的大量扩散,例如基于深度学习的方法,数据的可用性引起了极大的兴趣。在这种情况下,特别需要高质量的培训,验证和测试数据集。体积数据是医学中非常重要的资源,因为它范围从疾病诊断到治疗监测。如果数据集足够,则可以培训模型来帮助医生完成这些任务。不幸的是,在某些情况和应用程序中,大量数据不可用。例如,在医疗领域,罕见疾病和隐私问题可能导致数据可用性受到限制。在非医学领域,获得足够数量的高质量数据的高成本也可能引起人们的关注。解决这些问题的方法可能是生成合成数据,以结合其他更传统的数据增强方法来执行数据增强。因此,关于3D生成对抗网络(GAN)的大多数出版物都在医疗领域内。生成现实合成数据的机制的存在是克服这一挑战的好资产,尤其是在医疗保健中,因为数据必须具有良好的质量并且接近现实,即现实,并且没有隐私问题。在这篇综述中,我们提供了使用GAN生成现实的3D合成数据的作品的摘要。因此,我们概述了具有共同体系结构,优势和缺点的这些领域中基于GAN的方法。我们提出了一种新颖的分类学,评估,挑战和研究机会,以提供医学和其他领域甘恩当前状态的整体概述。
translated by 谷歌翻译
The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 3rd International Workshop on Reading Music Systems, held in Alicante on the 23rd of July 2021.
translated by 谷歌翻译
Generative Adversarial Networks (GANs) were introduced by Goodfellow in 2014, and since then have become popular for constructing generative artificial intelligence models. However, the drawbacks of such networks are numerous, like their longer training times, their sensitivity to hyperparameter tuning, several types of loss and optimization functions and other difficulties like mode collapse. Current applications of GANs include generating photo-realistic human faces, animals and objects. However, I wanted to explore the artistic ability of GANs in more detail, by using existing models and learning from them. This dissertation covers the basics of neural networks and works its way up to the particular aspects of GANs, together with experimentation and modification of existing available models, from least complex to most. The intention is to see if state of the art GANs (specifically StyleGAN2) can generate album art covers and if it is possible to tailor them by genre. This was attempted by first familiarizing myself with 3 existing GANs architectures, including the state of the art StyleGAN2. The StyleGAN2 code was used to train a model with a dataset containing 80K album cover images, then used to style images by picking curated images and mixing their styles.
translated by 谷歌翻译
The success of deep learning is largely due to the availability of large amounts of training data that cover a wide range of examples of a particular concept or meaning. In the field of medicine, having a diverse set of training data on a particular disease can lead to the development of a model that is able to accurately predict the disease. However, despite the potential benefits, there have not been significant advances in image-based diagnosis due to a lack of high-quality annotated data. This article highlights the importance of using a data-centric approach to improve the quality of data representations, particularly in cases where the available data is limited. To address this "small-data" issue, we discuss four methods for generating and aggregating training data: data augmentation, transfer learning, federated learning, and GANs (generative adversarial networks). We also propose the use of knowledge-guided GANs to incorporate domain knowledge in the training data generation process. With the recent progress in large pre-trained language models, we believe it is possible to acquire high-quality knowledge that can be used to improve the effectiveness of knowledge-guided generative methods.
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
缺乏足够大的开放医疗数据库是AI驱动的医疗保健中最大的挑战之一。使用生成对抗网络(GAN)创建的合成数据似乎是减轻隐私政策问题的好解决方案。另一种类型的治疗是在多个医疗机构之间进行分散方案,而无需交换本地数据样本。在本文中,我们探讨了集中式和分散的设置中的无条件和有条件的gan。集中式设置模仿了对大型但高度不平衡的皮肤病变数据集的研究,而分散的人则通过三个机构模拟了更现实的医院情况。我们评估了模型的性能,从忠诚度,多样性,训练速度和对生成合成数据进行培训的分类器的预测能力。此外,我们通过探索潜在空间和嵌入投影的解释性。计算出的真实图像及其在潜在空间中的投影之间的距离证明了训练有素的gan的真实性和概括,这是此类应用程序中的主要关注点之一。用于进行研究的开源代码可在\ url {https://github.com/aidse/stylegan2-ada-pytorch}上公开获得。
translated by 谷歌翻译
合成健康数据在共享数据以支持生物医学研究和创新医疗保健应用的发展时有可能减轻隐私问题。基于机器学习,尤其是生成对抗网络(GAN)方法的现代方法生成的现代方法继续发展并表现出巨大的潜力。然而,缺乏系统的评估框架来基准测试方法,并确定哪些方法最合适。在这项工作中,我们引入了一个可推广的基准测试框架,以评估综合健康数据的关键特征在实用性和隐私指标方面。我们将框架应用框架来评估来自两个大型学术医疗中心的电子健康记录(EHRS)数据的合成数据生成方法。结果表明,共享合成EHR数据存在公用事业私人关系权衡。结果进一步表明,在每个用例中,在所有标准上都没有明确的方法是最好的,这使得为什么需要在上下文中评估合成数据生成方法。
translated by 谷歌翻译
由于技术成本的降低和卫星发射的增加,卫星图像变得越来越流行和更容易获得。除了提供仁慈的目的外,还可以出于恶意原因(例如错误信息)使用卫星数据。事实上,可以依靠一般图像编辑工具来轻松操纵卫星图像。此外,随着深层神经网络(DNN)的激增,可以生成属于各种领域的现实合成图像,与合成生成的卫星图像的扩散有关的其他威胁正在出现。在本文中,我们回顾了关于卫星图像的产生和操纵的最新技术(SOTA)。特别是,我们既关注从头开始的合成卫星图像的产生,又要通过图像转移技术对卫星图像进行语义操纵,包括从一种类型的传感器到另一种传感器获得的图像的转换。我们还描述了迄今已研究的法医检测技术,以对合成图像伪造进行分类和检测。虽然我们主要集中在法医技术上明确定制的,该技术是针对AI生成的合成内容物的检测,但我们还审查了一些用于一般剪接检测的方法,这些方法原则上也可以用于发现AI操纵图像
translated by 谷歌翻译
深度学习属于人工智能领域,机器执行通常需要某种人类智能的任务。类似于大脑的基本结构,深度学习算法包括一种人工神经网络,其类似于生物脑结构。利用他们的感官模仿人类的学习过程,深入学习网络被送入(感官)数据,如文本,图像,视频或声音。这些网络在不同的任务中优于最先进的方法,因此,整个领域在过去几年中看到了指数增长。这种增长在过去几年中每年超过10,000多种出版物。例如,只有在医疗领域中的所有出版物中覆盖的搜索引擎只能在Q3 2020中覆盖所有出版物的子集,用于搜索术语“深度学习”,其中大约90%来自过去三年。因此,对深度学习领域的完全概述已经不可能在不久的将来获得,并且在不久的将来可能会难以获得难以获得子场的概要。但是,有几个关于深度学习的综述文章,这些文章专注于特定的科学领域或应用程序,例如计算机愿景的深度学习进步或在物体检测等特定任务中进行。随着这些调查作为基础,这一贡献的目的是提供对不同科学学科的深度学习的第一个高级,分类的元调查。根据底层数据来源(图像,语言,医疗,混合)选择了类别(计算机愿景,语言处理,医疗信息和其他工程)。此外,我们还审查了每个子类别的常见架构,方法,专业,利弊,评估,挑战和未来方向。
translated by 谷歌翻译
尽管在文本,图像和视频上生成的对抗网络(GAN)取得了显着的成功,但由于一些独特的挑战,例如捕获不平衡数据中的依赖性,因此仍在开发中,生成高质量的表格数据仍在开发中,从而优化了合成患者数据的质量。保留隐私。在本文中,我们提出了DP-CGAN,这是一个由数据转换,采样,条件和网络培训组成的差异私有条件GAN框架,以生成现实且具有隐私性的表格数据。 DP-Cgans区分分类和连续变量,并将它们分别转换为潜在空间。然后,我们将条件矢量构建为附加输入,不仅在不平衡数据中介绍少数族裔类,还可以捕获变量之间的依赖性。我们将统计噪声注入DP-CGAN的网络训练过程中的梯度,以提供差异隐私保证。我们通过统计相似性,机器学习绩效和隐私测量值在三个公共数据集和两个现实世界中的个人健康数据集上使用最先进的生成模型广泛评估了我们的模型。我们证明,我们的模型优于其他可比模型,尤其是在捕获变量之间的依赖性时。最后,我们在合成数据生成中介绍了数据实用性与隐私之间的平衡,考虑到现实世界数据集的不同数据结构和特征,例如不平衡变量,异常分布和数据的稀疏性。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
In biomedical image analysis, the applicability of deep learning methods is directly impacted by the quantity of image data available. This is due to deep learning models requiring large image datasets to provide high-level performance. Generative Adversarial Networks (GANs) have been widely utilized to address data limitations through the generation of synthetic biomedical images. GANs consist of two models. The generator, a model that learns how to produce synthetic images based on the feedback it receives. The discriminator, a model that classifies an image as synthetic or real and provides feedback to the generator. Throughout the training process, a GAN can experience several technical challenges that impede the generation of suitable synthetic imagery. First, the mode collapse problem whereby the generator either produces an identical image or produces a uniform image from distinct input features. Second, the non-convergence problem whereby the gradient descent optimizer fails to reach a Nash equilibrium. Thirdly, the vanishing gradient problem whereby unstable training behavior occurs due to the discriminator achieving optimal classification performance resulting in no meaningful feedback being provided to the generator. These problems result in the production of synthetic imagery that is blurry, unrealistic, and less diverse. To date, there has been no survey article outlining the impact of these technical challenges in the context of the biomedical imagery domain. This work presents a review and taxonomy based on solutions to the training problems of GANs in the biomedical imaging domain. This survey highlights important challenges and outlines future research directions about the training of GANs in the domain of biomedical imagery.
translated by 谷歌翻译