在逻辑中使用元规则,即其内容包含其他规则的规则,最近在非单调推理的情况下引起了人们的关注:第一个逻辑形式化和有效算法来计算此类理论的(元)扩展在Olivieri等人(2021年)中提出的这项工作通过考虑悬浮方面扩展了这种逻辑框架。由此产生的逻辑不仅能够建模政策,还可以解决许多法律系统中发生的知名方面。已经研究了我们刚才提到的应用区域中使用不良逻辑(DL)对元符号建模的使用。在这一研究中,上述研究并不关注元符号的一般计算特性。这项研究以两个主要贡献填补了这一空白。首先,我们介绍并形式化了两种具有元符号的可性义能逻辑的变体,以代表(1)具有能态模态的可d不平式元理论,(2)规则之间的两种不同类型的冲突:简单的冲突可不诚实的无义冲突和谨慎的冲突,谨慎的冲突和谨慎的冲突可义的义逻辑。其次,我们推进有效算法以计算两个变体的扩展。
translated by 谷歌翻译
本文介绍了可不可避免的义逻辑的扩展,以解决务实的奇数问题。该逻辑应用三个一般原则:(1)必须在CTD推理的一般逻辑处理中解决务实的奇数问题;(2)必须采用非单调方法来处理CTD推理;(3)CTD推理的逻辑模型必须在计算上是可行的,并且如果可能的话,必须有效。提议的不理deontic逻辑的扩展详细阐述了政府机构和Rotolo(2019)提出的模型的初步版本。先前的解决方案是基于逻辑(建设性,自上而下)证明理论的特定特征。但是,该方法引入了一定程度的非确定性。为了避免问题,我们提供逻辑的自下而上表征。新的特征为有效实施逻辑提供了见解,并使我们能够建立问题的计算复杂性。
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
Boolean query construction is often critical for medical systematic review literature search. To create an effective Boolean query, systematic review researchers typically spend weeks coming up with effective query terms and combinations. One challenge to creating an effective systematic review Boolean query is the selection of effective MeSH Terms to include in the query. In our previous work, we created neural MeSH term suggestion methods and compared them to state-of-the-art MeSH term suggestion methods. We found neural MeSH term suggestion methods to be highly effective. In this demonstration, we build upon our previous work by creating (1) a Web-based MeSH term suggestion prototype system that allows users to obtain suggestions from a number of underlying methods and (2) a Python library that implements ours and others' MeSH term suggestion methods and that is aimed at researchers who want to further investigate, create or deploy such type of methods. We describe the architecture of the web-based system and how to use it for the MeSH term suggestion task. For the Python library, we describe how the library can be used for advancing further research and experimentation, and we validate the results of the methods contained in the library on standard datasets. Our web-based prototype system is available at http://ielab-mesh-suggest.uqcloud.net, while our Python library is at https://github.com/ielab/meshsuggestlib.
translated by 谷歌翻译
Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.
translated by 谷歌翻译
Large machine learning models with improved predictions have become widely available in the chemical sciences. Unfortunately, these models do not protect the privacy necessary within commercial settings, prohibiting the use of potentially extremely valuable data by others. Encrypting the prediction process can solve this problem by double-blind model evaluation and prohibits the extraction of training or query data. However, contemporary ML models based on fully homomorphic encryption or federated learning are either too expensive for practical use or have to trade higher speed for weaker security. We have implemented secure and computationally feasible encrypted machine learning models using oblivious transfer enabling and secure predictions of molecular quantum properties across chemical compound space. However, we find that encrypted predictions using kernel ridge regression models are a million times more expensive than without encryption. This demonstrates a dire need for a compact machine learning model architecture, including molecular representation and kernel matrix size, that minimizes model evaluation costs.
translated by 谷歌翻译
Diffusion Probabilistic Models (DPMs) have recently been employed for image deblurring. DPMs are trained via a stochastic denoising process that maps Gaussian noise to the high-quality image, conditioned on the concatenated blurry input. Despite their high-quality generated samples, image-conditioned Diffusion Probabilistic Models (icDPM) rely on synthetic pairwise training data (in-domain), with potentially unclear robustness towards real-world unseen images (out-of-domain). In this work, we investigate the generalization ability of icDPMs in deblurring, and propose a simple but effective guidance to significantly alleviate artifacts, and improve the out-of-distribution performance. Particularly, we propose to first extract a multiscale domain-generalizable representation from the input image that removes domain-specific information while preserving the underlying image structure. The representation is then added into the feature maps of the conditional diffusion model as an extra guidance that helps improving the generalization. To benchmark, we focus on out-of-distribution performance by applying a single-dataset trained model to three external and diverse test sets. The effectiveness of the proposed formulation is demonstrated by improvements over the standard icDPM, as well as state-of-the-art performance on perceptual quality and competitive distortion metrics compared to existing methods.
translated by 谷歌翻译
Entity Alignment (EA), which aims to detect entity mappings (i.e. equivalent entity pairs) in different Knowledge Graphs (KGs), is critical for KG fusion. Neural EA methods dominate current EA research but still suffer from their reliance on labelled mappings. To solve this problem, a few works have explored boosting the training of EA models with self-training, which adds confidently predicted mappings into the training data iteratively. Though the effectiveness of self-training can be glimpsed in some specific settings, we still have very limited knowledge about it. One reason is the existing works concentrate on devising EA models and only treat self-training as an auxiliary tool. To fill this knowledge gap, we change the perspective to self-training to shed light on it. In addition, the existing self-training strategies have limited impact because they introduce either much False Positive noise or a low quantity of True Positive pseudo mappings. To improve self-training for EA, we propose exploiting the dependencies between entities, a particularity of EA, to suppress the noise without hurting the recall of True Positive mappings. Through extensive experiments, we show that the introduction of dependency makes the self-training strategy for EA reach a new level. The value of self-training in alleviating the reliance on annotation is actually much higher than what has been realised. Furthermore, we suggest future study on smart data annotation to break the ceiling of EA performance.
translated by 谷歌翻译
Entity Alignment (EA) aims to find equivalent entities between two Knowledge Graphs (KGs). While numerous neural EA models have been devised, they are mainly learned using labelled data only. In this work, we argue that different entities within one KG should have compatible counterparts in the other KG due to the potential dependencies among the entities. Making compatible predictions thus should be one of the goals of training an EA model along with fitting the labelled data: this aspect however is neglected in current methods. To power neural EA models with compatibility, we devise a training framework by addressing three problems: (1) how to measure the compatibility of an EA model; (2) how to inject the property of being compatible into an EA model; (3) how to optimise parameters of the compatibility model. Extensive experiments on widely-used datasets demonstrate the advantages of integrating compatibility within EA models. In fact, state-of-the-art neural EA models trained within our framework using just 5\% of the labelled data can achieve comparable effectiveness with supervised training using 20\% of the labelled data.
translated by 谷歌翻译
Unhealthy dietary habits are considered as the primary cause of multiple chronic diseases such as obesity and diabetes. The automatic food intake monitoring system has the potential to improve the quality of life (QoF) of people with dietary related diseases through dietary assessment. In this work, we propose a novel contact-less radar-based food intake monitoring approach. Specifically, a Frequency Modulated Continuous Wave (FMCW) radar sensor is employed to recognize fine-grained eating and drinking gestures. The fine-grained eating/drinking gesture contains a series of movement from raising the hand to the mouth until putting away the hand from the mouth. A 3D temporal convolutional network (3D-TCN) is developed to detect and segment eating and drinking gestures in meal sessions by processing the Range-Doppler Cube (RD Cube). Unlike previous radar-based research, this work collects data in continuous meal sessions. We create a public dataset that contains 48 meal sessions (3121 eating gestures and 608 drinking gestures) from 48 participants with a total duration of 783 minutes. Four eating styles (fork & knife, chopsticks, spoon, hand) are included in this dataset. To validate the performance of the proposed approach, 8-fold cross validation method is applied. Experimental results show that our proposed 3D-TCN outperforms the model that combines a convolutional neural network and a long-short-term-memory network (CNN-LSTM), and also the CNN-Bidirectional LSTM model (CNN-BiLSTM) in eating and drinking gesture detection. The 3D-TCN model achieves a segmental F1-score of 0.887 and 0.844 for eating and drinking gestures, respectively. The results of the proposed approach indicate the feasibility of using radar for fine-grained eating and drinking gesture detection and segmentation in meal sessions.
translated by 谷歌翻译