在这项工作中,我们提出了一个新的高斯进程回归(GPR)方法:物理信息辅助Kriging(PHIK)。在标准数据驱动的Kriging中,感兴趣的未知功能通常被视为高斯过程,其中具有假定的静止协方差,其具有从数据估计的QuandEdmente。在PHIK中,我们从可用随机模型的实现中计算平均值和协方差函数,例如,从管理随机部分微分方程解决方案的实现。这种构造的高斯过程通常是非静止的,并且不承担特定形式的协方差。我们的方法避免了数据驱动的GPR方法中的优化步骤来识别超参数。更重要的是,我们证明了确定性线性操作员形式的物理约束在得到的预测中保证。当在随机模型实现中包含错误时,我们还提供了保留物理约束时的误差估计。为了降低获取随机模型的计算成本,我们提出了一种多级蒙特卡罗估计的平均和协方差函数。此外,我们介绍了一种有源学习算法,指导选择附加观察位置。 PHIK的效率和准确性被证明重建部分已知的修饰的Branin功能,研究三维传热问题,并从稀疏浓度测量学习保守的示踪剂分布。
translated by 谷歌翻译
在本文中,我们开发了一种物理知识的神经网络(PINN)模型,用于具有急剧干扰初始条件的抛物线问题。作为抛物线问题的一个示例,我们考虑具有点(高斯)源初始条件的对流 - 分散方程(ADE)。在$ d $维的ADE中,在初始条件衰减中的扰动随时间$ t $ as $ t^{ - d/2} $,这可能会在Pinn解决方案中造成较大的近似错误。 ADE溶液中的局部大梯度使该方程的残余效率低下的(PINN)拉丁高立方体采样(常见)。最后,抛物线方程的PINN解对损耗函数中的权重选择敏感。我们提出了一种归一化的ADE形式,其中溶液的初始扰动不会降低幅度,并证明该归一化显着降低了PINN近似误差。我们提出了与通过其他方法选择的权重相比,损耗函数中的权重标准更准确。最后,我们提出了一种自适应采样方案,该方案可显着减少相同数量的采样(残差)点的PINN溶液误差。我们证明了提出的PINN模型的前进,反向和向后ADE的准确性。
translated by 谷歌翻译
识别异质电导率场并重建污染物释放历史是地下修复的关键方面。通过有限和嘈杂的液压头和集中度测量实现这两个目标是具有挑战性的。这些障碍包括解决高维参数的反问题,以及重复前进建模所需的高计算成本。我们使用卷积对抗自动编码器(CAAE)进行异质非高斯电导率场的参数化,并具有低维的潜在表示。此外,我们训练了三维密集的卷积编码器(密集)网络,以作为流和运输过程的正向替代。结合了CAAE和密度向前的替代模型,使用多个数据同化(ESMDA)算法的整体更平滑,用于从未知参数的贝叶斯后分布中进行采样,形成CAAE密集的ESMDA反转框架。我们在三维污染物源和电导率域识别问题中应用了这种CAAE密集的ESMDA反转框架。提供了CAAE-ESMDA与物理流和运输模拟器和CAAE密度浓度ESMDA的反转结果的比较,这表明以更高的计算效率实现了准确的重建结果。
translated by 谷歌翻译