配子等合作驾驶系统,依靠沟通和信息交换,为每个特工创造情境感知。因此,控制部件的设计和性能与通信部件性能紧密耦合。车辆之间的信息流可以显着影响排的动态。因此,排列的性能和稳定性不仅取决于车辆的控制器,还取决于信息流拓扑(IFT)。 IFT可能导致某些排特性的限制,即稳定性和可扩展性。蜂窝载体 - 一切(C-V2X)已成为支持连接和自动化车辆应用的主要通信技术之一。由于数据包丢失,无线通道会创建随机链路中断和网络拓扑的变化。在本文中,我们使用一阶马尔可夫模型模拟车辆之间的通信链路,以捕获每个链路的普遍时间相关性。这些模型通过在系统设计阶段期间的通信链路更好地近似来实现性能评估。我们的方法是使用实​​验中的数据来使用马尔可夫链的分组间隙(IPG)和连续IPG状态的过渡概率矩阵来模拟分组间隙(IPG)。使用基于各种不同车辆密度和通信率的经验数据来源的模型从高保真模拟中收集训练数据。利用IPG模型,我们分析了一家车辆的平均方形稳定性,标准共识协议调整了理想的通信,并比较不同情景的性能下降。
translated by 谷歌翻译
In recent years, nonlinear model predictive control (NMPC) has been extensively used for solving automotive motion control and planning tasks. In order to formulate the NMPC problem, different coordinate systems can be used with different advantages. We propose and compare formulations for the NMPC related optimization problem, involving a Cartesian and a Frenet coordinate frame (CCF/ FCF) in a single nonlinear program (NLP). We specify costs and collision avoidance constraints in the more advantageous coordinate frame, derive appropriate formulations and compare different obstacle constraints. With this approach, we exploit the simpler formulation of opponent vehicle constraints in the CCF, as well as road aligned costs and constraints related to the FCF. Comparisons to other approaches in a simulation framework highlight the advantages of the proposed approaches.
translated by 谷歌翻译
Perceptual speech quality is an important performance metric for teleconferencing applications. The mean opinion score (MOS) is standardized for the perceptual evaluation of speech quality and is obtained by asking listeners to rate the quality of a speech sample. Recently, there has been increasing research interest in developing models for estimating MOS blindly. Here we propose a multi-task framework to include additional labels and data in training to improve the performance of a blind MOS estimation model. Experimental results indicate that the proposed model can be trained to jointly estimate MOS, reverberation time (T60), and clarity (C50) by combining two disjoint data sets in training, one containing only MOS labels and the other containing only T60 and C50 labels. Furthermore, we use a semi-supervised framework to combine two MOS data sets in training, one containing only MOS labels (per ITU-T Recommendation P.808), and the other containing separate scores for speech signal, background noise, and overall quality (per ITU-T Recommendation P.835). Finally, we present preliminary results for addressing individual rater bias in the MOS labels.
translated by 谷歌翻译
We introduce the concepts of inverse solvability and security for a generic linear forward model and demonstrate how they can be applied to models used in federated learning. We provide examples of such models which differ in the resulting inverse solvability and security as defined in this paper. We also show how the large number of users participating in a given iteration of federated learning can be leveraged to increase both solvability and security. Finally, we discuss possible extensions of the presented concepts including the nonlinear case.
translated by 谷歌翻译
Graph neural networks (GNNs) are the primary tool for processing graph-structured data. Unfortunately, the most commonly used GNNs, called Message Passing Neural Networks (MPNNs) suffer from several fundamental limitations. To overcome these limitations, recent works have adapted the idea of positional encodings to graph data. This paper draws inspiration from the recent success of Laplacian-based positional encoding and defines a novel family of positional encoding schemes for graphs. We accomplish this by generalizing the optimization problem that defines the Laplace embedding to more general dissimilarity functions rather than the 2-norm used in the original formulation. This family of positional encodings is then instantiated by considering p-norms. We discuss a method for calculating these positional encoding schemes, implement it in PyTorch and demonstrate how the resulting positional encoding captures different properties of the graph. Furthermore, we demonstrate that this novel family of positional encodings can improve the expressive power of MPNNs. Lastly, we present preliminary experimental results.
translated by 谷歌翻译
学习多样化的技能是机器人技术的主要挑战之一。为此,模仿学习方法取得了令人印象深刻的结果。这些方法需要明确标记的数据集或采用一致的技能执行,以使学习和积极控制单个行为,从而限制其适用性。在这项工作中,我们提出了一种合作的对抗方法,用于从未标记的数据集中获得可控技能的单一多功能策略,该数据集包含各种状态过渡模式,通过最大化其可区分性。此外,我们表明,通过在生成的对抗性模仿学习框架中利用无监督的技能发现,新颖而有用的技能随着成功的任务实现而出现。最后,在示威中编码的各种技能的忠实复制中,对获得的多功能策略进行了测试,并呈现了忠实的复制。
translated by 谷歌翻译
背景:基于学习的深度颈部淋巴结水平(HN_LNL)自动纤维与放射疗法研究和临床治疗计划具有很高的相关性,但在学术文献中仍被研究过。方法:使用35个规划CTS的专家划分的队列用于培训NNU-NEN 3D FULLES/2D-ENEBLEN模型,用于自动分片20不同的HN_LNL。验证是在独立的测试集(n = 20)中进行的。在一项完全盲目的评估中,3位临床专家在与专家创建的轮廓的正面比较中对深度学习自动分类的质量进行了评价。对于10个病例的亚组,将观察者内的变异性与深度学习自动分量性能进行了比较。研究了Autocontour与CT片平面方向的一致性对几何精度和专家评级的影响。结果:与专家创建的轮廓相比,对CT SLICE平面调整的深度学习分割的平均盲目专家评级明显好得多(81.0 vs. 79.6,p <0.001),但没有切片平面的深度学习段的评分明显差。专家创建的轮廓(77.2 vs. 79.6,p <0.001)。深度学习分割的几何准确性与观察者内变异性(平均骰子,0.78 vs. 0.77,p = 0.064)的几何准确性无关,并且在提高水平之间的准确性方面差异(p <0.001)。与CT切片平面方向一致性的临床意义未由几何精度指标(骰子,0.78 vs. 0.78 vs. 0.78,p = 0.572)结论:我们表明可以将NNU-NENE-NET 3D-FULLRES/2D-ENEMELBEND用于HN_LNL高度准确的自动限制仅使用有限的培训数据集,该数据集非常适合在研究环境中在HN_LNL的大规模标准化自动限制。几何准确度指标只是盲人专家评级的不完善的替代品。
translated by 谷歌翻译
随着系统变得更大,更复杂,从开源的收集网络威胁智能对于维持和实现高水平的安全性变得越来越重要。但是,这些开源通常会受到信息过载的约束。因此,应用机器学习模型将信息量凝结到必要的内容很有用。然而,以前的研究和应用表明,由于其概括能力低,现有的分类器无法提取有关新兴网络安全事件的特定信息。因此,我们建议通过为每个新事件培训新的分类器来克服这个问题的系统。由于这需要使用标准培训方法进行大量标记的数据,因此我们结合了三种不同的低数据制度技术 - 转移学习,数据增强和很少的学习学习 - 从很少的标记实例中培训高质量的分类器。我们使用从2021年的Microsoft Exchange Server数据泄露中得出的新型数据集评估了我们的方法,该数据集由三名专家标记。与标准训练方法相比,与标准训练方法相比,与标准训练方法相比,F1得分的增加超过21分,与几次学习中的最新方法相比,F1得分的增加超过18分。此外,经过此方法培训的分类器和32个实例的分类器仅比接受1800个实例的分类器少于5 F1分数。
translated by 谷歌翻译
深度神经网络的学习算法通常基于有误后传播(BackProp)的监督端到端随机梯度下降(SGD)培训。 Backprop算法需要大量标记的训练样本才能获得高性能。但是,在许多现实的应用中,即使有很多图像样本,很少有标签被标记,并且必须使用半监督的样品培训策略。 Hebbian学习代表了一种可能采取样本培训的方法;但是,在当前解决方案中,它不能很好地扩展到大型数据集。在本文中,我们提出了FastheBB,这是HEBBIAN学习的有效且可扩展的解决方案,通过1)合并在一批输入上更新计算和聚集,以及2)利用有效的GPU上的有效矩阵乘法算法。在半监督的学习方案中,我们在不同的计算机视觉基准测试方面验证了我们的方法。 FastheBB在训练速度方面最多优于先前的解决方案,尤其是,我们首次能够将HEBBIAN算法带入ImageNet量表。
translated by 谷歌翻译
学习敏捷技能是机器人技术的主要挑战之一。为此,加强学习方法取得了令人印象深刻的结果。这些方法需要根据奖励功能或可以在模拟中查询的专家来提供明确的任务信息,以提供目标控制输出,从而限制其适用性。在这项工作中,我们提出了一种生成的对抗方法,用于从部分和潜在的物理不兼容的演示中推断出奖励功能,以成功地获得参考或专家演示的成功技能。此外,我们表明,通过使用Wasserstein gan公式和从以粗糙和部分信息为输入的示范中进行过渡,我们能够提取强大的策略并能够模仿证明的行为。最后,在一个名为Solo 8的敏捷四倍的机器人上测试了所获得的技能,例如后空飞弹,并对手持人类示范的忠实复制进行了测试。
translated by 谷歌翻译