背景:基于学习的深度颈部淋巴结水平(HN_LNL)自动纤维与放射疗法研究和临床治疗计划具有很高的相关性,但在学术文献中仍被研究过。方法:使用35个规划CTS的专家划分的队列用于培训NNU-NEN 3D FULLES/2D-ENEBLEN模型,用于自动分片20不同的HN_LNL。验证是在独立的测试集(n = 20)中进行的。在一项完全盲目的评估中,3位临床专家在与专家创建的轮廓的正面比较中对深度学习自动分类的质量进行了评价。对于10个病例的亚组,将观察者内的变异性与深度学习自动分量性能进行了比较。研究了Autocontour与CT片平面方向的一致性对几何精度和专家评级的影响。结果:与专家创建的轮廓相比,对CT SLICE平面调整的深度学习分割的平均盲目专家评级明显好得多(81.0 vs. 79.6,p <0.001),但没有切片平面的深度学习段的评分明显差。专家创建的轮廓(77.2 vs. 79.6,p <0.001)。深度学习分割的几何准确性与观察者内变异性(平均骰子,0.78 vs. 0.77,p = 0.064)的几何准确性无关,并且在提高水平之间的准确性方面差异(p <0.001)。与CT切片平面方向一致性的临床意义未由几何精度指标(骰子,0.78 vs. 0.78 vs. 0.78,p = 0.572)结论:我们表明可以将NNU-NENE-NET 3D-FULLRES/2D-ENEMELBEND用于HN_LNL高度准确的自动限制仅使用有限的培训数据集,该数据集非常适合在研究环境中在HN_LNL的大规模标准化自动限制。几何准确度指标只是盲人专家评级的不完善的替代品。
translated by 谷歌翻译
病变分割是放射线工作流程的关键步骤。手动分割需要长时间的执行时间,并且容易发生可变性,从而损害了放射线研究及其鲁棒性的实现。在这项研究中,对非小细胞肺癌患者的计算机断层扫描图像进行了深入学习的自动分割方法。还评估了手动与自动分割在生存放射模型的性能中的使用。方法总共包括899名NSCLC患者(2个专有:A和B,1个公共数据集:C)。肺部病变的自动分割是通过训练先前开发的建筑NNU-NET进行的,包括2D,3D和级联方法。用骰子系数评估自动分割的质量,以手动轮廓为参考。通过从数据集A的手动和自动轮廓中提取放射性的手工制作和深度学习特征来探索自动分割对患者生存的放射素模型对患者生存的性能的影响。评估并比较模型的精度。结果通过平均2D和3D模型的预测以及应用后处理技术来提取最大连接的组件,可以实现具有骰子= 0.78 +(0.12)的自动和手动轮廓之间的最佳一致性。当使用手动或自动轮廓,手工制作或深度特征时,在生存模型的表现中未观察到统计差异。最好的分类器显示出0.65至0.78之间的精度。结论NNU-NET在自动分割肺部病变中的有希望的作用已得到证实,从而大大降低了时必的医生的工作量,而不会损害基于放射线学的生存预测模型的准确性。
translated by 谷歌翻译
肿瘤分割是放疗治疗计划的基本步骤。为了确定口咽癌患者(OPC)原发性肿瘤(GTVP)的准确分割,需要同时评估不同图像模态,并从不同方向探索每个图像体积。此外,分割的手动固定边界忽略了肿瘤描述中已知的空间不确定性。这项研究提出了一种新型的自动深度学习(DL)模型,以在注册的FDG PET/CT图像上进行逐片自适应GTVP分割的辐射肿瘤学家。我们包括138名在我们研究所接受过(化学)辐射治疗的OPC患者。我们的DL框架利用了间和板板的上下文。连续3片的串联FDG PET/CT图像和GTVP轮廓的序列用作输入。进行了3倍的交叉验证,进行了3​​次,对从113例患者的轴向(a),矢状(s)和冠状(c)平面提取的序列进行了训练。由于体积中的连续序列包含重叠的切片,因此每个切片产生了平均的三个结果预测。在A,S和C平面中,输出显示具有预测肿瘤的概率不同的区域。使用平均骰子得分系数(DSC)评估了25名患者的模型性能。预测是最接近地面真理的概率阈值(在A中为0.70,s为0.70,在s中为0.77,在C平面中为0.80)。提出的DL模型的有希望的结果表明,注册的FDG PET/CT图像上的概率图可以指导逐片自适应GTVP分割中的辐射肿瘤学家。
translated by 谷歌翻译
风险的准确器官(OAR)分割对于减少治疗后并发症的放射治疗至关重要。达人指南推荐头部和颈部(H&N)区域的一套超过40桨的桨,然而,由于这项任务的可预测的禁止劳动力成本,大多数机构通过划定较小的桨子和忽视的少数,选择了大量简化的协议与其他桨相关的剂量分布。在这项工作中,我们提出了一种使用深度学习的新颖,自动化和高效的分层OAR分段(SOARS)系统,精确地描绘了一套全面的42 H&N OAR。 SOARS将42桨分层进入锚,中级和小型和硬质子类别,通过神经结构搜索(NAS)原则,专门为每个类别提供神经网络架构。我们在内在机构中使用176名培训患者建立了SOAR模型,并在六个不同的机构中独立评估了1327名外部患者。对于每个机构评估,它始终如一地表现出其他最先进的方法至少3-5%的骰子得分(在其他度量的相对误差减少36%)。更重要的是,广泛的多用户研究明显证明,98%的SOARE预测只需要非常轻微或没有直接临床验收的修订(节省90%的辐射脑神经工作负载),并且它们的分割和剂量准确度在于或小于帧 - 用户的变化。这些调查结果证实了H&N癌症放射疗法工作流OAR描绘过程的强烈临床适用性,提高了效率,全面性和质量。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
在这项工作中,我们着重于(全身)CT图像中多个解剖结构的自动分割。此任务存在许多分割算法。但是,在大多数情况下,它们遇到了3个问题:1。它们难以使用(代码和数据不公开或难以使用)。 2.它们不概括(通常将训练数据集策划为仅包含非常干净的图像,而这些图像不会反映在临床常规过程中发现的图像分布),3。算法只能分段一个解剖结构。对于更多结构,必须使用几种算法,以增加设置系统所需的精力。在这项工作中,我们发布了一个新的数据集和分割工具包,该工具包解决了所有这三个问题:在1204个CT图像中,我们对104个解剖结构(27个器官,59个骨头,10个肌肉,10次肌肉,8艘船)涵盖了大多数相关类别的大部分使用类别案例。我们展示了改进的工作流程,以创建地面真理分段,从而使过程加快了10倍以上。 CT图像是从临床常规中随机采样的,因此代表了一个现实世界数据集,该数据集将其推广到临床应用。该数据集包含各种不同的病理,扫描仪,序列和位点。最后,我们在此新数据集上训练一种细分算法。我们称此算法总节度器,并使其轻松作为验证的Python PIP软件包(PIP安装总节目器)。用法与TotalSmentemator -I CT.NII.GZ -O SEG一样简单,对于大多数CT图像,它都可以很好地工作。该代码可在https://github.com/wasserth/totalsegnsementator和数据集上获得,请访问https://doi.org/10.5281/zenodo.6802613。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
脑转移经常发生在转移性癌症的患者中。早期和准确地检测脑转移对于放射治疗的治疗计划和预后至关重要。为了提高深入学习的脑转移检测性能,提出了一种称为体积级灵敏度特异性(VSS)的定制检测损失,该损失是单个转移检测灵敏度和(子)体积水平的特异性。作为敏感性和精度始终在转移水平中始终是折射率,可以通过调节VSS损耗中的重量而无需骰子分数系数进行分段转移来实现高精度或高精度。为了减少被检测为假阳性转移的转移样结构,提出了一种时间的现有量作为神经网络的额外输入。我们提出的VSS损失提高了脑转移检测的敏感性,将灵敏度提高了86.7%至95.5%。或者,它将精度提高了68.8%至97.8%。随着额外的时间现有量,在高灵敏度模型中,约45%的假阳性转移减少,高特异性模型的精度达到99.6%。所有转移的平均骰子系数约为0.81。随着高灵敏度和高特异性模型的集合,平均每位患者的1.5个假阳性转移需要进一步检查,而大多数真正的阳性转移确认。该集合学习能够区分从需要特殊专家审查或进一步跟进的转移候选人的高信心真正的阳性转移,特别适合实际临床实践中专家支持的要求。
translated by 谷歌翻译
通过磁共振成像(MRI)评估肿瘤负担对于评估胶质母细胞瘤的治疗反应至关重要。由于疾病的高异质性和复杂性,该评估的性能很复杂,并且与高变异性相关。在这项工作中,我们解决了这个问题,并提出了一条深度学习管道,用于对胶质母细胞瘤患者进行全自动的端到端分析。我们的方法同时确定了肿瘤的子区域,包括第一步的肿瘤,周围肿瘤和手术腔,然后计算出遵循神经符号学(RANO)标准的当前响应评估的体积和双相测量。此外,我们引入了严格的手动注释过程,其随后是人类专家描绘肿瘤子区域的,并捕获其分割的信心,后来在训练深度学习模型时被使用。我们广泛的实验研究的结果超过了760次术前和504例从公共数据库获得的神经胶质瘤后患者(2021 - 2020年在19个地点获得)和临床治疗试验(47和69个地点,可用于公共数据库(在19个地点获得)(47和69个地点)术前/术后患者,2009-2011)并以彻底的定量,定性和统计分析进行了备份,表明我们的管道在手动描述时间的一部分中对术前和术后MRI进行了准确的分割(最高20比人更快。二维和体积测量与专家放射科医生非常吻合,我们表明RANO测量并不总是足以量化肿瘤负担。
translated by 谷歌翻译
Delineation of the left ventricular cavity, myocardium and right ventricle from cardiac magnetic resonance images (multi-slice 2D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly-available and fully-annotated dataset for the purpose of Cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification O. Bernard and F. Cervenansky are with the
translated by 谷歌翻译
开发了一个3D深度学习模型(OARNet)并用于在CT图像上描绘28 H&N OAR。 OARNET利用密集连接的网络来检测OAR边界盒,然后在盒子内划定OAR。它将来自任何层的信息重用到后续层,并使用跳过连接来组合来自不同密集块电平的信息来逐步提高描绘精度。培训最多使用最多28名专家手册划定(MD)桨从165 CTS划算。骰子相似度系数(DSC)和第95百分位HAUSDORFF距离(HD95)相对于MD评估了70个其他CT。对MD的平均值,最大和根平均方形剂量差异评估了70cts的56个。 oarnet与UANET,ANATOMYNET和MULTI-ATLAS分段(MAS)进行比较。使用95%置信区间的Wilcoxon签名级别测试用于评估意义。 Wilcoxon签署了排名测试表明,与UANET相比,OARNET改善了(P <0.05)DSC(23/28桨)和HD95(17/28)。 OARNet优于DSC(28/28)和HD95(27/28)的Anatomynet和MAS。与UANET相比,OARNET将中位数DSC改善至0.05和HD95,高达1.5mm。与Anatomynet和MAS相比,OARNET将中位数(DSC,HD95)改为高达(0.08,2.7mm)和(0.17,6.3mm)。 DoSimetry,Oarnet优于Uanet(Dmax 7/28; Dmean 10/28),Anatomynet(Dmax 21/28; Dmean 24/28)和MAS(Dmax 22/28; Dmean 21/28)。 DenSenet架构使用混合方法进行优化,该混合方法执行OAR特定的边界框检测,然后是要素识别。与其他自动描绘方法相比,Oarnet优于或等于所有几何(颞叶L,HD95)和28 H&N OAR的一个剂量(眼睛L,平均剂量)终点,并且优于或者等于所有OAR的Anatomynet和MAS。
translated by 谷歌翻译
CT图像中的椎骨定位,分割和识别是众多临床应用的关键。尽管近年来,深度学习策略已为该领域带来了重大改进,但由于其在培训数据集中的代表性不佳,过渡性和病理椎骨仍在困扰大多数现有方法。另外,提出的基于非学习的方法可以利用先验知识来处理这种特定情况。在这项工作中,我们建议将这两种策略结合起来。为此,我们引入了一个迭代循环,在该循环中,单个椎骨被递归地定位,分割和使用深网鉴定,而使用统计先验则实施解剖一致性。在此策略中,通过在图形模型中编码其配置来处理过渡性椎骨识别,该模型将局部深网预测汇总为解剖上一致的最终结果。我们的方法在Verse20挑战基准上取得了最新的结果,并且优于过渡性椎骨的所有方法以及对Verse19挑战基准的概括。此外,我们的方法可以检测和报告不满足解剖学一致性先验的不一致的脊柱区域。我们的代码和模型公开用于研究目的。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
胎儿超声(US)中胎盘的自动分割由于(i)(i)胎盘外观的高度多样性而具有挑战性我们禁止在妊娠晚期进行整个胎盘评估的观点。在这项工作中,我们通过多任务学习方法解决了这三个挑战,该方法结合了单个卷积神经网络中胎盘位置(例如,前,后部)和语义胎盘分段的分类。通过分类任务,模型可以从更大,更多样化的数据集中学习,同时在有限的训练集条件下提高分割任务的准确性。通过这种方法,我们研究了多个评估者的注释的变异性,并表明我们的自动分割(前胎盘的骰子为0.86,后胎盘的骰子为0.83),与观察者内和观察者间的变异性相比,我们的自动段性能达到了人级的性能。最后,我们的方法可以使用由三个阶段组成的多视图US采集管道提供整个胎盘分割:多探针图像采集,图像融合和图像分段。这会导致对较大结构(例如胎盘中的胎盘)的高质量分割,其图像伪像降低,这超出了单个探针的视野。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
早期检测改善了胰腺导管腺癌(PDAC)中的预后,但挑战,因为病变通常很小,并且在对比增强的计算断层扫描扫描(CE-CT)上定义很差。深度学习可以促进PDAC诊断,但是当前模型仍然无法识别小(<2cm)病变。在这项研究中,最先进的深度学习模型用于开发用于PDAC检测的自动框架,专注于小病变。另外,研究了整合周围解剖学的影响。 CE-CT来自119个病理验证的PDAC患者的群组和123名没有PDAC患者的队列用于训练NNUNET用于自动病变检测和分割(\ TEXTIT {NNUNET \ _t})。训练了两种额外的鼻塞,以研究解剖学积分的影响:(1)分割胰腺和肿瘤(\ yryit {nnunet \ _tp}),(2)分割胰腺,肿瘤和多周围的解剖结构(\ textit {nnunet \_多发性硬化症})。外部可公开的测试集用于比较三个网络的性能。 \ Textit {nnunet \ _ms}实现了最佳性能,在整个测试集的接收器操作特性曲线下的区域为0.91,肿瘤的0.88 <2cm,显示最先进的深度学习可以检测到小型PDAC和解剖信息的好处。
translated by 谷歌翻译
临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。最需要对这些变化的方法可靠。提出了一种新颖的深度学习方法,以将人脑快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署了弱监督的学习,以利用部分标记的数据来进行整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过生成具有较高的脑扫描的磁共振成像(MRI)数据来扩展模型训练,同时保持数据隐私。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用了不同的Atlases的几项实验,以评估受过训练模型的分割性能,并且与不同内部和不同内部和不同内部方法的现有方法相比,结果显示了较高的分割精度和鲁棒性。间域数据集。
translated by 谷歌翻译
超声(US)成像数据的分割和空间比对在头三个月获得的数据对于监测整个关键时期的人类胚胎生长和发育至关重要。当前的方法是手动或半自动的,因此非常耗时,容易出现错误。为了自动执行这些任务,我们提出了一个多ATLAS框架,用于使用深度学习,以最小的监督使用深度学习,以自动分割和空间对齐。我们的框架学会了将胚胎注册到地图集,该地图集由在胎龄(GA)范围内获取的美国图像组成,分段并在空间上与预定义的标准方向排列。由此,我们可以得出胚胎的分割,并将胚胎放在标准方向上。使用在8+0到12+6周GA的美国图像,并选择了八个受试者作为地图集。我们评估了不同的融合策略,以合并多个地图集:1)使用单个主题中的地图集训练框架,2)使用所有可用地图的数据训练框架和3)3)结合每个受试者训练的框架。为了评估性能,我们计算了测试集的骰子分数。我们发现,使用所有可用地图的训练框架优于结合的结合,与对单个主题进行培训的所有框架中的最佳框架相比,给出了类似的结果。此外,我们发现,从所有可用的地图中,从GA最接近的四个图像中选择图像,无论个人质量如何,都以0.72的中位数分数获得了最佳效果。我们得出的结论是,我们的框架可以准确地分割和空间对齐孕妇在3D US图像中对胚胎进行对齐,并且对于可用地图中存在的质量变化是可靠的。我们的代码可在以下网址公开获取:https://github.com/wapbastiaansen/multi-atlas-seg-reg。
translated by 谷歌翻译
前列腺活检和图像引导的治疗程序通常是在与磁共振图像(MRI)的超声指导下进行的。准确的图像融合依赖于超声图像上前列腺的准确分割。然而,超声图像中降低的信噪比和工件(例如,斑点和阴影)限制了自动前列腺分割技术的性能,并将这些方法推广到新的图像域是本质上很难的。在这项研究中,我们通过引入一种新型的2.5D深神经网络来解决这些挑战,用于超声图像上的前列腺分割。我们的方法通过组合有监督的域适应技术和知识蒸馏损失,解决了转移学习和填充方法的局限性(即,在更新模型权重时,在更新模型权重时的性能下降)。知识蒸馏损失允许保留先前学习的知识,并在新数据集上的模型填充后降低性能下降。此外,我们的方法依赖于注意模块,该模块认为模型特征定位信息以提高分割精度。我们对一个机构的764名受试者进行了培训,并仅使用后续机构中的十个受试者对我们的模型进行了审核。我们分析了方法在三个大型数据集上的性能,其中包括来自三个不同机构的2067名受试者。我们的方法达到了平均骰子相似性系数(骰子)为$ 94.0 \ pm0.03 $,而Hausdorff距离(HD95)为2.28 $ mm $,在第一机构的独立受试者中。此外,我们的模型在其他两个机构的研究中都很好地概括了(骰子:$ 91.0 \ pm0.03 $; hd95:3.7 $ mm $ and Dice:$ 82.0 \ pm0.03 $; hd95 $; hd95:7.1 $ mm $)。
translated by 谷歌翻译
医学图像分割模型的性能指标用于衡量参考注释和预测之间的一致性。在开发此类模型中,使用了一组通用指标,以使结果更具可比性。但是,公共数据集中的分布与临床实践中遇到的案例之间存在不匹配。许多常见的指标无法衡量这种不匹配的影响,尤其是对于包含不确定,小或空参考注释的临床数据集。因此,可能无法通过此类指标来验证模型在临床上有意义的一致性。评估临床价值的维度包括独立于参考注释量的大小,考虑参考注释的不确定性,体积计和/或位置一致性的奖励以及对空参考注释正确分类的奖励。与普通的公共数据集不同,我们的内部数据集更具代表性。它包含不确定的,小或空的参考注释。我们研究了有关深度学习框架的预测的公开度量指标,以确定哪些设置共同指标可提供有意义的结果。我们将公共基准数据集进行比较而没有不确定,小或空参考注释。该代码将发布。
translated by 谷歌翻译