Underwater navigation presents several challenges, including unstructured unknown environments, lack of reliable localization systems (e.g., GPS), and poor visibility. Furthermore, good-quality obstacle detection sensors for underwater robots are scant and costly; and many sensors like RGB-D cameras and LiDAR only work in-air. To enable reliable mapless underwater navigation despite these challenges, we propose a low-cost end-to-end navigation system, based on a monocular camera and a fixed single-beam echo-sounder, that efficiently navigates an underwater robot to waypoints while avoiding nearby obstacles. Our proposed method is based on Proximal Policy Optimization (PPO), which takes as input current relative goal information, estimated depth images, echo-sounder readings, and previous executed actions, and outputs 3D robot actions in a normalized scale. End-to-end training was done in simulation, where we adopted domain randomization (varying underwater conditions and visibility) to learn a robust policy against noise and changes in visibility conditions. The experiments in simulation and real-world demonstrated that our proposed method is successful and resilient in navigating a low-cost underwater robot in unknown underwater environments. The implementation is made publicly available at https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation.
translated by 谷歌翻译
节点之间有序序列的动态图在现实世界的工业应用中普遍存在电子商务和社交平台中。然而,由于数据的时间和结构依赖性和不规则性,因此,对动态图表的表示学习已经提出了很大的计算挑战,防止这些模型部署到现实世界的应用程序。为了解决这一挑战,我们提出了一种有效的算法,有效的动态图学习(边缘),它通过训练丢失选择性地表达某些时间依赖性,以改善计算中的并行性。我们展示了边缘可以扩展到数百万节点的动态图形,数亿个时间事件,实现新的最先进的(SOTA)性能。
translated by 谷歌翻译
In the field of cross-modal retrieval, single encoder models tend to perform better than dual encoder models, but they suffer from high latency and low throughput. In this paper, we present a dual encoder model called BagFormer that utilizes a cross modal interaction mechanism to improve recall performance without sacrificing latency and throughput. BagFormer achieves this through the use of bag-wise interactions, which allow for the transformation of text to a more appropriate granularity and the incorporation of entity knowledge into the model. Our experiments demonstrate that BagFormer is able to achieve results comparable to state-of-the-art single encoder models in cross-modal retrieval tasks, while also offering efficient training and inference with 20.72 times lower latency and 25.74 times higher throughput.
translated by 谷歌翻译
Accurate airway extraction from computed tomography (CT) images is a critical step for planning navigation bronchoscopy and quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). The existing methods are challenging to sufficiently segment the airway, especially the high-generation airway, with the constraint of the limited label and cannot meet the clinical use in COPD. We propose a novel two-stage 3D contextual transformer-based U-Net for airway segmentation using CT images. The method consists of two stages, performing initial and refined airway segmentation. The two-stage model shares the same subnetwork with different airway masks as input. Contextual transformer block is performed both in the encoder and decoder path of the subnetwork to finish high-quality airway segmentation effectively. In the first stage, the total airway mask and CT images are provided to the subnetwork, and the intrapulmonary airway mask and corresponding CT scans to the subnetwork in the second stage. Then the predictions of the two-stage method are merged as the final prediction. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analysis demonstrate that our proposed method extracted much more branches and lengths of the tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.
translated by 谷歌翻译
尖峰神经网络(SNN)因其高能量效率和分类性能的最新进展而引起了很多关注。但是,与传统的深度学习方法不同,对SNN对对抗性例子的鲁棒性的分析和研究仍然相对欠发达。在这项工作中,我们通过实验和分析三个重要的SNN安全属性来推进对抗机器学习的领域。首先,我们表明对SNN的成功白盒对抗性攻击高度依赖于潜在的替代梯度技术。其次,我们分析了SNN和其他最先进的体系结构(如视觉变压器和大型传输CNN)生成的对抗性示例的可传递性。我们证明,SNN并不经常被视觉变压器和某些类型的CNN产生的对抗典范所欺骗。最后,我们开发了一种新颖的白盒攻击,该攻击生成了能够同时欺骗SNN模型和非SNN模型的对抗性示例。我们的实验和分析是广泛而严格的,涵盖了两个数据集(CIFAR-10和CIFAR-100),五种不同的白色盒子攻击以及十二个不同的分类器模型。
translated by 谷歌翻译
深度神经网络(DNN)容易受到对抗性示例的影响,其中DNN由于含有不可察觉的扰动而被误导为虚假输出。对抗性训练是一种可靠有效的防御方法,可能会大大减少神经网络的脆弱性,并成为强大学习的事实上的标准。尽管许多最近的作品实践了以数据为中心的理念,例如如何生成更好的对抗性示例或使用生成模型来产生额外的培训数据,但我们回顾了模型本身,并从深度特征分布的角度重新审视对抗性的鲁棒性有见地的互补性。在本文中,我们建议分支正交性对抗训练(BORT)获得最先进的性能,仅使用原始数据集用于对抗训练。为了练习我们整合多个正交解决方案空间的设计思想,我们利用一个简单明了的多分支神经网络,可消除对抗性攻击而不会增加推理时间。我们启发提出相应的损耗函数,分支 - 正交丢失,以使多支出模型正交的每个溶液空间。我们分别在CIFAR-10,CIFAR-100和SVHN上评估了我们的方法,分别针对\ ell _ {\ infty}的规范触发尺寸\ epsilon = 8/255。进行了详尽的实验,以表明我们的方法超出了所有最新方法,而无需任何技巧。与所有不使用其他数据进行培训的方法相比,我们的模型在CIFAR-10和CIFAR-100上实现了67.3%和41.5%的鲁棒精度(在最先进的ART上提高了 +7.23%和 +9.07% )。我们还使用比我们的训练组胜过比我们的方法的表现要大得多。我们所有的模型和代码均可在https://github.com/huangd1999/bort上在线获得。
translated by 谷歌翻译
点云的几乎没有分割仍然是一项具有挑战性的任务,因为没有有效的方法将局部点云信息转换为全局表示,这阻碍了点特征的概括能力。在这项研究中,我们提出了双向特征全球化(BFG)方法,该方法利用点特征和原型向量之间的相似性测量,以双向方式将全球感知嵌入到局部点特征中。随着点对点型全球化(PO2PRG),BFG根据从密度点特征到稀疏原型的相似权重将本地点特征汇总到原型。使用原型到点全球化(PR2POG),基于从稀疏原型到密集点特征的相似性权重,全局感知嵌入到局部点特征中。每个类嵌入全局感知的类的稀疏原型汇总到基于度量学习框架的几个原型3D分割的单个原型。对S3DIS和SCANNET的广泛实验表明,BFG显着超过了最新方法。
translated by 谷歌翻译
我们提出Automerge,这是一种LIDAR数据处理框架,用于将大量地图段组装到完整的地图中。传统的大规模地图合并方法对于错误的数据关联是脆弱的,并且主要仅限于离线工作。 Automerge利用多观点的融合和自适应环路闭合检测来进行准确的数据关联,并且它使用增量合并来从随机顺序给出的单个轨迹段组装大图,没有初始估计。此外,在组装段后,自动制度可以执行良好的匹配和姿势图片优化,以在全球范围内平滑合并的地图。我们展示了城市规模合并(120公里)和校园规模重复合并(4.5公里x 8)的汽车。该实验表明,自动化(i)在段检索中超过了第二和第三最佳方法的14%和24%的召回,(ii)在120 km大尺度地图组件(III)中实现了可比较的3D映射精度,IT对于暂时的重新审视是强大的。据我们所知,Automerge是第一种映射方法,它可以在无GPS的帮助下合并数百公里的单个细分市场。
translated by 谷歌翻译
域的适应性(DA)旨在将知识从标记的源域中学习的知识转移到未标记或标记较小但相关的目标域的知识。理想情况下,源和目标分布应彼此平等地对齐,以实现公正的知识转移。但是,由于源和目标域中注释数据的数量之间存在显着不平衡,通常只有目标分布与源域保持一致,从而使不必要的源特定知识适应目标域,即偏置域的适应性。为了解决此问题,在这项工作中,我们通过对基于对抗性的DA方法进行建模来对歧视器的不确定性进行建模,以优化无偏见转移。我们理论上分析了DA中提出的无偏可传递性学习方法的有效性。此外,为了减轻注释数据不平衡的影响,我们利用了目标域中未标记样品的伪标签选择的估计不确定性,这有助于实现更好的边际和条件分布在域之间的分布。对各种DA基准数据集的广泛实验结果表明,可以轻松地将所提出的方法纳入各种基于对抗性的DA方法中,从而实现最新的性能。
translated by 谷歌翻译
在本文中,我们研究了深神经网络中的动态感知对抗攻击问题。大多数现有的对抗性攻击算法是在基本假设下设计的 - 网络架构在整个攻击过程中都是固定的。然而,这种假设不适用于许多最近提出的网络,例如最近提出的网络。 3D稀疏卷积网络,其中包含输入相关的执行,以提高计算效率。它导致严重问题的滞后梯度,由于架构之后的架构而导致当前步骤的学习攻击无效。为了解决这个问题,我们提出了一种带有铅梯度法(LGM)并显示出滞后梯度的显着影响。更具体地说,我们重新制定了梯度,以了解网络架构的潜在动态变化,使得学习攻击更好地“引导”的下一步,而是当网络架构动态变化时的动态 - 不知道方法。关于各种数据集的广泛实验表明,我们的LGM在语义细分和分类上实现了令人印象深刻的性能。与动态无知的方法相比,LGM在SCANNET和S3DIS数据集上均达到约20%的MIOU。 LGM还优于最近的点云攻击。
translated by 谷歌翻译