计算光学成像(COI)系统利用其设置中的光学编码元素(CE)在单个或多个快照中编码高维场景,并使用计算算法对其进行解码。 COI系统的性能很大程度上取决于其主要组件的设计:CE模式和用于执行给定任务的计算方法。常规方法依赖于随机模式或分析设计来设置CE的分布。但是,深神经网络(DNNS)的可用数据和算法功能已在CE数据驱动的设计中开辟了新的地平线,该设计共同考虑了光学编码器和计算解码器。具体而言,通过通过完全可区分的图像形成模型对COI测量进行建模,该模型考虑了基于物理的光及其与CES的相互作用,可以在端到端优化定义CE和计算解码器的参数和计算解码器(e2e)方式。此外,通过在同一框架中仅优化CE,可以从纯光学器件中执行推理任务。这项工作调查了CE数据驱动设计的最新进展,并提供了有关如何参数化不同光学元素以将其包括在E2E框架中的指南。由于E2E框架可以通过更改损耗功能和DNN来处理不同的推理应用程序,因此我们提出低级任务,例如光谱成像重建或高级任务,例如使用基于任务的光学光学体系结构来增强隐私的姿势估计,以维护姿势估算。最后,我们说明了使用全镜DNN以光速执行的分类和3D对象识别应用程序。
translated by 谷歌翻译
Ever since the first microscope by Zacharias Janssen in the late 16th century, scientists have been inventing new types of microscopes for various tasks. Inventing a novel architecture demands years, if not decades, worth of scientific experience and creativity. In this work, we introduce Differentiable Microscopy ($\partial\mu$), a deep learning-based design paradigm, to aid scientists design new interpretable microscope architectures. Differentiable microscopy first models a common physics-based optical system however with trainable optical elements at key locations on the optical path. Using pre-acquired data, we then train the model end-to-end for a task of interest. The learnt design proposal can then be simplified by interpreting the learnt optical elements. As a first demonstration, based on the optical 4-$f$ system, we present an all-optical quantitative phase microscope (QPM) design that requires no computational post-reconstruction. A follow-up literature survey suggested that the learnt architecture is similar to the generalized phase contrast method developed two decades ago. Our extensive experiments on multiple datasets that include biological samples show that our learnt all-optical QPM designs consistently outperform existing methods. We experimentally verify the functionality of the optical 4-$f$ system based QPM design using a spatial light modulator. Furthermore, we also demonstrate that similar results can be achieved by an uninterpretable learning based method, namely diffractive deep neural networks (D2NN). The proposed differentiable microscopy framework supplements the creative process of designing new optical systems and would perhaps lead to unconventional but better optical designs.
translated by 谷歌翻译
变压器与卷积编码器结合使用,最近已使用微型多普勒特征用于手势识别(HGR)。我们为HGR提出了一个基于视觉转换器的架构,该体系结构具有多腹腔连续波多普勒雷达接收器。所提出的架构由三个模块组成:一个卷积编码器,带有三个变压器层的注意模块和一个多层感知器。新型的卷积解码器有助于将具有较大尺寸的斑块喂入注意力模块,以改善特征提取。用与两种抗连续波多普勒雷达接收器相对应的数据集获得的实验结果(Skaria等人出版)证实,所提出的体系结构的准确性达到了98.3%,从而实质上超过了现状的阶段。 - 在使用的数据集上进行艺术。
translated by 谷歌翻译
深度神经网络(DNNS)的边缘训练是持续学习的理想目标。但是,这受到训练所需的巨大计算能力的阻碍。硬件近似乘数表明,它们在获得DNN推理加速器中获得资源效率的有效性;但是,使用近似乘数的培训在很大程度上尚未开发。为了通过支持DNN培训的近似乘数来构建有效的资源加速器,需要对不同DNN体系结构和不同近似乘数进行彻底评估。本文介绍了近似值,这是一个开源框架,允许使用模拟近似乘数快速评估DNN训练和推理。近似值与TensorFlow(TF)一样用户友好,仅需要对DNN体系结构的高级描述以及近似乘数的C/C ++功能模型。我们通过使用GPU(AMSIM)上的基于基于LUT的近似浮点(FP)乘数模拟器来提高乘数在乘数级别的模拟速度。近似值利用CUDA并有效地将AMSIM集成到张量库中,以克服商业GPU中的本机硬件近似乘数的缺乏。我们使用近似值来评估使用LENET和RESNETS体系结构的小型和大型数据集(包括Imagenet)的近似乘数的DNN训练的收敛性和准确性。与FP32和BFLOAT16乘数相比,评估表明测试准确性相似的收敛行为和可忽略不计的变化。与训练和推理中基于CPU的近似乘数模拟相比,GPU加速近似值快2500倍以上。基于具有本地硬件乘数的高度优化的闭合源Cudnn/Cublas库,原始张量量仅比近似值快8倍。
translated by 谷歌翻译