Covid-19大流行是人类的祸害,宣称全世界超过500万人的生活。虽然疫苗正在全世界分布,但表观需要实惠的筛选技术,以便为无法获得传统医学的世界服务。人工智能可以提供利用咳嗽声音作为主要筛选模式的解决方案。本文介绍了多种模型,这些模型在学术文献目前呈现的最大评估数据集上取得了相对尊敬的性能。此外,我们还显示性能随着培训数据规模而增加,表明世界各地的数据收集,以帮助使用非传统方式对抗Covid-19大流行。
translated by 谷歌翻译
Quantifying motion in 3D is important for studying the behavior of humans and other animals, but manual pose annotations are expensive and time-consuming to obtain. Self-supervised keypoint discovery is a promising strategy for estimating 3D poses without annotations. However, current keypoint discovery approaches commonly process single 2D views and do not operate in the 3D space. We propose a new method to perform self-supervised keypoint discovery in 3D from multi-view videos of behaving agents, without any keypoint or bounding box supervision in 2D or 3D. Our method uses an encoder-decoder architecture with a 3D volumetric heatmap, trained to reconstruct spatiotemporal differences across multiple views, in addition to joint length constraints on a learned 3D skeleton of the subject. In this way, we discover keypoints without requiring manual supervision in videos of humans and rats, demonstrating the potential of 3D keypoint discovery for studying behavior.
translated by 谷歌翻译
The NASA Astrophysics Data System (ADS) is an essential tool for researchers that allows them to explore the astronomy and astrophysics scientific literature, but it has yet to exploit recent advances in natural language processing. At ADASS 2021, we introduced astroBERT, a machine learning language model tailored to the text used in astronomy papers in ADS. In this work we: - announce the first public release of the astroBERT language model; - show how astroBERT improves over existing public language models on astrophysics specific tasks; - and detail how ADS plans to harness the unique structure of scientific papers, the citation graph and citation context, to further improve astroBERT.
translated by 谷歌翻译
Neurosymbolic Programming (NP) techniques have the potential to accelerate scientific discovery. These models combine neural and symbolic components to learn complex patterns and representations from data, using high-level concepts or known constraints. NP techniques can interface with symbolic domain knowledge from scientists, such as prior knowledge and experimental context, to produce interpretable outputs. We identify opportunities and challenges between current NP models and scientific workflows, with real-world examples from behavior analysis in science: to enable the use of NP broadly for workflows across the natural and social sciences.
translated by 谷歌翻译
对于医疗保健提供者提供适当的患者护理的准确和详细说明,包括患者时​​间表中的药物变化,至关重要。医疗保健提供者或患者本身可能会引发患者药物的改变。用药更改采用多种形式,包括处方药和相关剂量修饰。这些更改提供了有关患者整体健康以及导致当前护理的理由的信息。然后,未来的护理可以基于患者的最终状态。这项工作探讨了从自由文本临床注释中自动提取药物变化信息。上下文药物事件数据集(CMED)是临床注释的语料库,其注释可以通过多种变化相关的属性来表征药物变化,包括更改的类型(启动,停止,增加等),更改,时间性,时间性,时间性,时间性,时间性,时间。改变可能性和否定。使用CMED,我们确定了临床文本中的药物提及,并提出了三个新型的基于BERT的新型基于BERT的系统,以解决注释的药物变化特征。我们证明,我们建议的体系结构改善了对CMED的初始工作改善药物变更分类的性能。我们确定了0.959 F1的高性能的药物提及,我们提出的系统将药物变化及其属性分类为0.827 F1。
translated by 谷歌翻译
现实世界的行为通常是由多种代理之间复杂的相互作用来塑造的。为了可靠地研究多代理行为,无监督和自我监督的学习的进步使从轨迹数据中学到了各种不同的行为表示。迄今为止,还没有一组统一的基准测试,可以在广泛的行为分析设置中进行定量和系统地比较方法。我们的目的是通过引入来自现实世界行为神经科学实验的大规模,多代理轨迹数据集来解决这一问题,该数据集涵盖了一系列行为分析任务。我们的数据集由来自通用模型生物的轨迹数据组成,其中有960万帧的小鼠数据和440万帧的飞行数据,在各种实验环境中,例如不同的菌株,相互作用的长度和光遗传学刺激。框架的子集还包括专家注销的行为标签。我们数据集的改进对应于跨多种生物的行为表示,并能够捕获常见行为分析任务的差异。
translated by 谷歌翻译
机器学习(ML)可解释性技术可以揭示数据中的不良模式,这些模型模型开发以做出预测 - 一旦部署就会​​造成危害。但是,如何采取行动解决这些模式并不总是很清楚。在ML与人类计算机互动研究人员,医师和数据科学家之间的合作中,我们开发了GAM Changer,这是第一个互动系统,可帮助域专家和数据科学家轻松,负责任地编辑通用的添加剂模型(GAM)和修复有问题的模式。借助新颖的交互技术,我们的工具将可解释性置于行动中 - 使用户能够分析,验证和使模型行为与知识和价值相结合。医师已经开始使用我们的工具来调查和修复肺炎和败血症的风险预测模型,以及在不同领域工作的7位数据科学家的评估突出显示我们的工具易于使用,满足他们的模型编辑需求,并适合他们当前的工作流程。我们的工具以现代网络技术为基础,在用户的网络浏览器或计算笔记本电脑中本地运行,从而降低了使用的障碍。 GAM Changer可在以下公共演示链接中获得:https://interpret.ml/gam-changer。
translated by 谷歌翻译
神经科学家和神经工具长期以来一直依赖多电极神经记录来研究大脑。但是,在典型的实验中,许多因素损坏了来自单个电极的神经记录,包括电噪声,运动伪像和制造错误。当前,普遍的做法是丢弃这些损坏的录音,减少已经有限的数据,难以收集。为了应对这一挑战,我们提出了深层神经插补(DNI),这是一个从跨空间位置,天和参与者中收集的数据中学习的框架,以从电极中恢复缺失值。我们通过线性最近的邻居方法和两个深层生成自动编码器探索我们的框架,证明了DNI的灵活性。一位深度自动编码器单独建模参与者,而另一个则扩展了该体系结构以共同建模。我们评估了12名用多电极内电图阵列植入的人类参与者的模型;参与者没有明确的任务,并且在数百个记录小时内自然行为。我们表明,DNI不仅恢复了时间序列,还可以恢复频率内容,并通过在科学相关的下游神经解码任务上恢复出色的性能来进一步确立DNI的实际价值。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译