机器学习(ML)可解释性技术可以揭示数据中的不良模式,这些模型模型开发以做出预测 - 一旦部署就会​​造成危害。但是,如何采取行动解决这些模式并不总是很清楚。在ML与人类计算机互动研究人员,医师和数据科学家之间的合作中,我们开发了GAM Changer,这是第一个互动系统,可帮助域专家和数据科学家轻松,负责任地编辑通用的添加剂模型(GAM)和修复有问题的模式。借助新颖的交互技术,我们的工具将可解释性置于行动中 - 使用户能够分析,验证和使模型行为与知识和价值相结合。医师已经开始使用我们的工具来调查和修复肺炎和败血症的风险预测模型,以及在不同领域工作的7位数据科学家的评估突出显示我们的工具易于使用,满足他们的模型编辑需求,并适合他们当前的工作流程。我们的工具以现代网络技术为基础,在用户的网络浏览器或计算笔记本电脑中本地运行,从而降低了使用的障碍。 GAM Changer可在以下公共演示链接中获得:https://interpret.ml/gam-changer。
translated by 谷歌翻译
最近在可解释的机器学习中的进展(ML)研究表明,模型利用数据中的不良模式来进行预测,这可能导致部署危害。但是,尚不清楚我们如何解决这些模型。我们介绍了我们正在进行的工作,游戏改变者,一个开源交互式系统,以帮助数据科学家和领域专家轻松且负责任地编辑其广义添加剂模型(Gams)。通过新颖的可视化技术,我们的工具将可解释性投入到行动 - 使人类用户能够分析,验证和对齐模型行为与他们的知识和价值。使用现代Web技术建造,我们的工具在用户的计算笔记本或Web浏览器中在本地运行,而无需额外计算资源,降低屏障以创建更负责的ML模型。Gam更换器可在https://interpret.ml/gam-changer中获得。
translated by 谷歌翻译
随着AI系统表现出越来越强烈的预测性能,它们的采用已经在许多域中种植。然而,在刑事司法和医疗保健等高赌场域中,由于安全,道德和法律问题,往往是完全自动化的,但是完全手工方法可能是不准确和耗时的。因此,对研究界的兴趣日益增长,以增加人力决策。除了为此目的开发AI技术之外,人民AI决策的新兴领域必须采用实证方法,以形成对人类如何互动和与AI合作做出决定的基础知识。为了邀请和帮助结构研究努力了解理解和改善人为 - AI决策的研究,我们近期对本课题的实证人体研究的文献。我们总结了在三个重要方面的100多篇论文中的研究设计选择:(1)决定任务,(2)AI模型和AI援助要素,以及(3)评估指标。对于每个方面,我们总结了当前的趋势,讨论了现场当前做法中的差距,并列出了未来研究的建议。我们的调查强调了开发共同框架的需要考虑人类 - AI决策的设计和研究空间,因此研究人员可以在研究设计中进行严格的选择,研究界可以互相构建并产生更广泛的科学知识。我们还希望这项调查将成为HCI和AI社区的桥梁,共同努力,相互塑造人类决策的经验科学和计算技术。
translated by 谷歌翻译
本文介绍了一种使用旨在解决现实世界应用中CDSS的低适用性和可扩展性问题的数据驱动的预测模型来构建一致和适用的临床决策支持系统(CDSS)的方法。该方法基于域特定和数据驱动的支持程序的三种特定于域和数据驱动的支持程序,该程序将被纳入临床业务流程,具有更高的信任和预测结果和建议的解释性。在考虑的三个阶段,监管策略,数据驱动模式和解释程序被集成,以实现与决策者的自然域特定的互动,具有智能决策支持焦点的连续缩小。该提出的方法能够实现更高水平的自动化,可扩展性和CDSS的语义解释性。该方法是在软件解决方案中实现的,并在T2DM预测中进行了测试,使我们能够改善已知的临床尺度(例如FindRisk),同时保持与现有应用程序类似的特定问题的推理界面。这种继承与三分阶段的方法一起提供了更高的解决方案兼容性,并导致数据驱动的解决方案在现实案件中的信任,有效和解释应用。
translated by 谷歌翻译
装袋和升压是在机器学习(ml)中的两个流行的集合方法,产生许多单独的决策树。由于这些方法的固有组合特性,它们通常以预测性能更优于单决定树或其他ML模型。然而,为每个决策树生成许多决定路径,增加了模型的整体复杂性,并阻碍了其在需要值得信赖和可解释的决策的域中的域,例如金融,社会护理和保健。因此,随着决策的数量升高,袋装和升降算法(例如随机森林和自适应升压)的解释性降低。在本文中,我们提出了一种视觉分析工具,该工具旨在帮助用户通过彻底的视觉检查工作流程从这种ML模型中提取决策,包括选择一套鲁棒和不同的模型(源自不同的集合学习算法),选择重要的功能根据他们的全球贡献,决定哪些决定对于全球解释(或本地,具体案件)是必不可少的。结果是基于多个模型的协议和用户出口的探索手动决策的最终决定。最后,我们通过用例,使用场景和用户学习评估患者的适用性和有效性。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
人类服务系统做出关键决策,影响社会中的个人。美国儿童福利系统做出了这样的决定,从筛查热线报告的报告报告,涉嫌虐待或忽视儿童保护性调查,使儿童接受寄养,再到将儿童返回永久家庭环境。这些对儿童生活的复杂而有影响力的决定取决于儿童福利决策者的判断。儿童福利机构一直在探索使用包括机器学习(ML)的经验,数据信息的方法来支持这些决策的方法。本文描述了ML支持儿童福利决策的概念框架。 ML框架指导儿童福利机构如何概念化ML可以解决的目标问题;兽医可用的管理数据用于构建ML;制定和开发ML规格,以反映机构正在进行的相关人群和干预措施;随着时间的流逝,部署,评估和监视ML作为儿童福利环境,政策和实践变化。道德考虑,利益相关者的参与以及避免框架的影响和成功的共同陷阱。从摘要到具体,我们描述了该框架的一种应用,以支持儿童福利决策。该ML框架虽然以儿童福利为中心,但可以推广用于解决其他公共政策问题。
translated by 谷歌翻译
组织依靠机器学习工程师(MLE)来操作ML,即部署和维护生产中的ML管道。操作ML或MLOP的过程包括(i)数据收集和标记的连续循环,(ii)实验以改善ML性能,(iii)在多阶段部署过程中评估,以及(iv)监视(iv)性能下降。当一起考虑这些责任似乎令人震惊 - 任何人如何进行MLOP,没有解决的挑战,对工具制造商有什么影响?我们对在包括聊天机器人,自动驾驶汽车和金融在内的许多应用程序中工作的18个MLE进行了半结构化的民族志访谈。我们的访谈暴露了三个变量,这些变量控制了生产ML部署的成功:速度,验证和版本。我们总结了成功实验,部署和维持生产绩效的共同实践。最后,我们讨论了受访者的痛点和反图案,对工具设计产生了影响。
translated by 谷歌翻译
自我跟踪可以提高人们对他们不健康的行为的认识,为行为改变提供见解。事先工作探索了自动跟踪器如何反映其记录数据,但它仍然不清楚他们从跟踪反馈中学到多少,以及哪些信息更有用。实际上,反馈仍然可以压倒,并简明扼要可以通过增加焦点和减少解释负担来改善学习。为了简化反馈,我们提出了一个自动跟踪反馈显着框架,以定义提供反馈的特定信息,为什么这些细节以及如何呈现它们(手动引出或自动反馈)。我们从移动食品跟踪的实地研究中收集了调查和膳食图像数据,并实施了Salientrack,一种机器学习模型,以预测用户从跟踪事件中学习。使用可解释的AI(XAI)技术,SalientRack识别该事件的哪些特征是最突出的,为什么它们导致正面学习结果,并优先考虑如何根据归属分数呈现反馈。我们展示了用例,并进行了形成性研究,以展示Salientrack的可用性和有用性。我们讨论自动跟踪中可读性的影响,以及如何添加模型解释性扩大了提高反馈体验的机会。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
随着人工智能的兴起,算法已经变得更好地从培训数据中学习基本模式,包括基于性别,种族等基于性别的社会偏见。部署此类算法对招聘,医疗保健,执法等领域的部署已经提高了严重的领域。对机器学习算法中的公平,问责制,信任和解释性的关注。为了减轻这个问题,我们提出了D-Bias,这是一种视觉交互式工具,它体现了人类在循环AI方法,以审核和减轻表格数据集的社交偏见。它使用图形因果模型来表示数据集中不同特征之间的因果关系,并作为注入域知识的媒介。用户可以通过识别因果网络中的不公平因果关系并使用一系列公平指标来检测对群体(例如女性或亚组)的偏见。此后,用户可以通过在不公平的因果边缘作用来减轻偏见。对于每种相互作用,例如弱化/删除有偏见的因果边缘,系统使用一种新方法来模拟基于当前因果模型的新(cla依)数据集。用户可以在视觉上评估其相互作用对不同公平指标,公用事业指标,数据失真和基础数据分布的影响。一旦满足,他们就可以下载依据的数据集并将其用于任何下游应用程序以进行更公正的预测。我们通过对3个数据集进行实验以及一项正式的用户研究来评估D偏差。我们发现,与不同公平指标的基线偏差方法相比,D偏差有助于显着降低偏差,同时几乎没有数据失真和效用较小的损失。此外,我们基于人类的方法极大地超过了关于信任,解释性和问责制的自动方法。
translated by 谷歌翻译
Incivility remains a major challenge for online discussion platforms, to such an extent that even conversations between well-intentioned users can often derail into uncivil behavior. Traditionally, platforms have relied on moderators to -- with or without algorithmic assistance -- take corrective actions such as removing comments or banning users. In this work we propose a complementary paradigm that directly empowers users by proactively enhancing their awareness about existing tension in the conversation they are engaging in and actively guides them as they are drafting their replies to avoid further escalation. As a proof of concept for this paradigm, we design an algorithmic tool that provides such proactive information directly to users, and conduct a user study in a popular discussion platform. Through a mixed methods approach combining surveys with a randomized controlled experiment, we uncover qualitative and quantitative insights regarding how the participants utilize and react to this information. Most participants report finding this proactive paradigm valuable, noting that it helps them to identify tension that they may have otherwise missed and prompts them to further reflect on their own replies and to revise them. These effects are corroborated by a comparison of how the participants draft their reply when our tool warns them that their conversation is at risk of derailing into uncivil behavior versus in a control condition where the tool is disabled. These preliminary findings highlight the potential of this user-centered paradigm and point to concrete directions for future implementations.
translated by 谷歌翻译
给定数千种同样准确的机器学习(ML)模型,用户如何在其中选择?最近的ML技术使领域专家和数据科学家能够为稀疏决策树生成完整的Rashomon设置,这是一套几乎最理想的可解释的ML模型。为了帮助ML从业者识别具有此Rashomon集合中理想属性的模型,我们开发了Timbertrek,这是第一个交互式可视化系统,该系统总结了数千个稀疏决策树的规模。两种用法方案突出了Timbertrek如何使用户能够轻松探索,比较和策划与域知识和价值观保持一致的模型。我们的开源工具直接在用户的计算笔记本和Web浏览器中运行,从而降低了创建更负责任的ML模型的障碍。Timbertrek可在以下公共演示链接中获得:https://poloclub.github.io/timbertrek。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
Teaser: How seemingly trivial experiment design choices to simplify the evaluation of human-ML systems can yield misleading results.
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
在数字治疗干预的背景下,例如互联网交付的认知行为治疗(ICBT)用于治疗抑郁和焦虑,广泛的研究表明,人类支持者或教练的参与如何协助接受治疗的人,改善用户参与治疗并导致更有效的健康结果而不是不受支持的干预措施。该研究旨在最大限度地提高这一人类支持的影响和结果,研究了通过AI和机器学习领域(ML)领域的最新进展提供的新机遇如何有助于有效地支持ICBT支持者的工作实践。本文报告了采访研究的详细调查结果,与15个ICBT支持者加深了解其现有的工作实践和信息需求,旨在有意义地向抑郁和焦虑治疗的背景下提供有用,可实现的ML申请。分析贡献(1)一组六个主题,总结了ICBT支持者在为其精神卫生客户提供有效,个性化反馈方面的策略和挑战;并回应这些学习,(2)对于ML方法如何帮助支持和解决挑战和信息需求,为每个主题提供具体机会。它依赖于在支持者LED客户审查实践中引入新的机器生成的数据见解的潜在社会,情感和务实含义的思考。
translated by 谷歌翻译
机器学习透明度(ML),试图揭示复杂模型的工作机制。透明ML承诺推进人为因素在目标用户中以人为本的人体目标的工程目标。从以人为本的设计视角,透明度不是ML模型的属性,而是一种能力,即算法与用户之间的关系;因此,与用户的迭代原型和评估对于获得提供透明度的充足解决方案至关重要。然而,由于有限的可用性和最终用户,遵循了医疗保健和医学图像分析的人以人为本的设计原则是具有挑战性的。为了调查医学图像分析中透明ML的状态,我们对文献进行了系统审查。我们的评论在医学图像分析应用程序的透明ML的设计和验证方面揭示了多种严重的缺点。我们发现,大多数研究到达迄今为止透明度作为模型本身的属性,类似于任务性能,而不考虑既未开发也不考虑最终用户也不考虑评估。此外,缺乏用户研究以及透明度声明的偶发验证将当代研究透明ML的医学图像分析有可能对用户难以理解的风险,因此临床无关紧要。为了缓解即将到来的研究中的这些缺点,同时承认人以人为中心设计在医疗保健中的挑战,我们介绍了用于医学图像分析中的透明ML系统的系统设计指令。 Intrult指南建议形成的用户研究作为透明模型设计的第一步,以了解用户需求和域要求。在此过程之后,会产生支持设计选择的证据,最终增加了算法提供透明度的可能性。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
分析分类模型性能对于机器学习从业人员来说是一项至关重要的任务。尽管从业者经常使用从混乱矩阵中得出的基于计数的指标,例如准确性,许多应用程序,例如天气预测,体育博彩或患者风险预测,但依赖分类器的预测概率而不是预测标签。在这些情况下,从业者关注的是产生校准模型,即输出反映真实分布的模型的模型。通常通过静态可靠性图在视觉上分析模型校准,但是,由于所需的强大聚合,传统的校准可视化可能会遭受各种缺陷。此外,基于计数的方法无法充分分析模型校准。我们提出校准,这是一个解决上述问题的交互性可靠性图。校准构造一个可靠性图,该图表可抵抗传统方法中的缺点,并允许进行交互式子组分析和实例级检查。我们通过在现实世界和合成数据上的用例中证明了校准的实用性。我们通过与常规分析模型校准的数据科学家进行思考实验的结果来进一步验证校准。
translated by 谷歌翻译