人工智能(AI)最近展示了它几乎所有生活领域的能力。机器学习是AI的一个子集,是研究人员的“热门”主题。机器学习在几乎全自然应用中优于其他经典预测技术。这是现代研究的关键部分。根据本声明,现代机器学习算法令人渴望大数据。由于小型数据集,研究人员可能不喜欢使用机器学习算法。为了解决这个问题,本调查的主要目的是说明,证明相关的研究,以了解称为灰色机器学习(GML)的半参数机学习框架的重要性。这种框架能够处理大型数据集以及用于时间序列预测可能结果的小型数据集。该调查概述了现有的时间序列预测的半参数机学习技术。本文为研究人员提供了关于GML框架的引物调查。为了允许对读者进行深入的理解,讨论了机器学习的简要描述,以及各种形式的传统灰色预测模型。此外,介绍了关于GML框架的重要性的简要说明。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
In recent years, social media has been widely explored as a potential source of communication and information in disasters and emergency situations. Several interesting works and case studies of disaster analytics exploring different aspects of natural disasters have been already conducted. Along with the great potential, disaster analytics comes with several challenges mainly due to the nature of social media content. In this paper, we explore one such challenge and propose a text classification framework to deal with Twitter noisy data. More specifically, we employed several transformers both individually and in combination, so as to differentiate between relevant and non-relevant Twitter posts, achieving the highest F1-score of 0.87.
translated by 谷歌翻译
Osteoarthritis (OA) is the most prevalent chronic joint disease worldwide, where knee OA takes more than 80% of commonly affected joints. Knee OA is not a curable disease yet, and it affects large columns of patients, making it costly to patients and healthcare systems. Etiology, diagnosis, and treatment of knee OA might be argued by variability in its clinical and physical manifestations. Although knee OA carries a list of well-known terminology aiming to standardize the nomenclature of the diagnosis, prognosis, treatment, and clinical outcomes of the chronic joint disease, in practice there is a wide range of terminology associated with knee OA across different data sources, including but not limited to biomedical literature, clinical notes, healthcare literacy, and health-related social media. Among these data sources, the scientific articles published in the biomedical literature usually make a principled pipeline to study disease. Rapid yet, accurate text mining on large-scale scientific literature may discover novel knowledge and terminology to better understand knee OA and to improve the quality of knee OA diagnosis, prevention, and treatment. The present works aim to utilize artificial neural network strategies to automatically extract vocabularies associated with knee OA diseases. Our finding indicates the feasibility of developing word embedding neural networks for autonomous keyword extraction and abstraction of knee OA.
translated by 谷歌翻译
Neural models that do not rely on pre-training have excelled in the keyphrase generation task with large annotated datasets. Meanwhile, new approaches have incorporated pre-trained language models (PLMs) for their data efficiency. However, there lacks a systematic study of how the two types of approaches compare and how different design choices can affect the performance of PLM-based models. To fill in this knowledge gap and facilitate a more informed use of PLMs for keyphrase extraction and keyphrase generation, we present an in-depth empirical study. Formulating keyphrase extraction as sequence labeling and keyphrase generation as sequence-to-sequence generation, we perform extensive experiments in three domains. After showing that PLMs have competitive high-resource performance and state-of-the-art low-resource performance, we investigate important design choices including in-domain PLMs, PLMs with different pre-training objectives, using PLMs with a parameter budget, and different formulations for present keyphrases. Further results show that (1) in-domain BERT-like PLMs can be used to build strong and data-efficient keyphrase generation models; (2) with a fixed parameter budget, prioritizing model depth over width and allocating more layers in the encoder leads to better encoder-decoder models; and (3) introducing four in-domain PLMs, we achieve a competitive performance in the news domain and the state-of-the-art performance in the scientific domain.
translated by 谷歌翻译
Privacy policies provide individuals with information about their rights and how their personal information is handled. Natural language understanding (NLU) technologies can support individuals and practitioners to understand better privacy practices described in lengthy and complex documents. However, existing efforts that use NLU technologies are limited by processing the language in a way exclusive to a single task focusing on certain privacy practices. To this end, we introduce the Privacy Policy Language Understanding Evaluation (PLUE) benchmark, a multi-task benchmark for evaluating the privacy policy language understanding across various tasks. We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training. We demonstrate that domain-specific pre-training offers performance improvements across all tasks. We release the benchmark to encourage future research in this domain.
translated by 谷歌翻译
While pre-trained language models (LM) for code have achieved great success in code completion, they generate code conditioned only on the contents within the file, i.e., in-file context, but ignore the rich semantics in other files within the same project, i.e., cross-file context, a critical source of information that is especially useful in modern modular software development. Such overlooking constrains code language models' capacity in code completion, leading to unexpected behaviors such as generating hallucinated class member functions or function calls with unexpected arguments. In this work, we develop a cross-file context finder tool, CCFINDER, that effectively locates and retrieves the most relevant cross-file context. We propose CoCoMIC, a framework that incorporates cross-file context to learn the in-file and cross-file context jointly on top of pretrained code LMs. CoCoMIC successfully improves the existing code LM with a 19.30% relative increase in exact match and a 15.41% relative increase in identifier matching for code completion when the cross-file context is provided.
translated by 谷歌翻译
Deep learning can extract rich data representations if provided sufficient quantities of labeled training data. For many tasks however, annotating data has significant costs in terms of time and money, owing to the high standards of subject matter expertise required, for example in medical and geophysical image interpretation tasks. Active Learning can identify the most informative training examples for the interpreter to train, leading to higher efficiency. We propose an Active learning method based on jointly learning representations for supervised and unsupervised tasks. The learned manifold structure is later utilized to identify informative training samples most dissimilar from the learned manifold from the error profiles on the unsupervised task. We verify the efficiency of the proposed method on a seismic facies segmentation dataset from the Netherlands F3 block survey, significantly outperforming contemporary methods to achieve the highest mean Intersection-Over-Union value of 0.773.
translated by 谷歌翻译
Hydrocarbon prospect risking is a critical application in geophysics predicting well outcomes from a variety of data including geological, geophysical, and other information modalities. Traditional routines require interpreters to go through a long process to arrive at the probability of success of specific outcomes. AI has the capability to automate the process but its adoption has been limited thus far owing to a lack of transparency in the way complicated, black box models generate decisions. We demonstrate how LIME -- a model-agnostic explanation technique -- can be used to inject trust in model decisions by uncovering the model's reasoning process for individual predictions. It generates these explanations by fitting interpretable models in the local neighborhood of specific datapoints being queried. On a dataset of well outcomes and corresponding geophysical attribute data, we show how LIME can induce trust in model's decisions by revealing the decision-making process to be aligned to domain knowledge. Further, it has the potential to debug mispredictions made due to anomalous patterns in the data or faulty training datasets.
translated by 谷歌翻译