Automated plot generation is the challenge of generating a sequence of events that will be perceived by readers as the plot of a coherent story. Traditional symbolic planners plan a story from a goal state and guarantee logical causal plot coherence but rely on a library of hand-crafted actions with their preconditions and effects. This closed world setting limits the length and diversity of what symbolic planners can generate. On the other hand, pre-trained neural language models can generate stories with great diversity, while being generally incapable of ending a story in a specified manner and can have trouble maintaining coherence. In this paper, we present an approach to story plot generation that unifies causal planning with neural language models. We propose to use commonsense knowledge extracted from large language models to recursively expand a story plot in a backward chaining fashion. Specifically, our system infers the preconditions for events in the story and then events that will cause those conditions to become true. We performed automatic evaluation to measure narrative coherence as indicated by the ability to answer questions about whether different events in the story are causally related to other events. Results indicate that our proposed method produces more coherent plotlines than several strong baselines.
translated by 谷歌翻译
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences. Existing methods to control for story preference utilize prompt engineering which is labor intensive and often inconsistent. They may also use logit-manipulation methods which require annotated datasets to exist for the desired attributes. To address these issues, we first train a contrastive bi-encoder model to align stories with corresponding human critiques, named CARP, building a general purpose preference model. This is subsequently used as a reward function to fine-tune a generative language model via reinforcement learning. However, simply fine-tuning a generative language model with a contrastive reward model does not always reliably result in a story generation system capable of generating stories that meet user preferences. To increase story generation robustness we further fine-tune the contrastive reward model using a prompt-learning technique. A human participant study is then conducted comparing generations from our full system, ablations, and two baselines. We show that the full fine-tuning pipeline results in a story generator preferred over a LLM 20x as large as well as logit-based methods. This motivates the use of contrastive learning for general purpose human preference modeling.
translated by 谷歌翻译
最近的神经生成系统已经证明了程序性生成游戏内容,图像,故事等的潜力。但是,大多数神经生成算法是“不受控制的”,因为用户在最初的及时规范之外的创意决策中几乎没有发言权。共同创造性的混合定位系统需要以用户为中心的影响算法,尤其是当用户不太可能拥有机器学习专业知识时。共同创造系统的关键是能够从用户到代理以及从代理到用户传达想法和意图的能力。共同创造的AI中的关键问题包括:用户如何表达自己的创造意图? Creative AI系统如何传达他们的信念,解释他们的举动或指示用户代表他们采取行动? Creative AI系统何时应该采取主动?此类问题的答案以及更多的答案将使我们能够开发出更好的共同创造系统,从而使人类更有能力表达自己的创造意图。我们介绍了Creative-Wand,这是一个可定制的框架,用于调查共同创造的混合发电生成。 Creative-Wand可以将生成模型和人类代理通信渠道的插入式注射到基于聊天的接口中。它提供了许多维度,在共同创造过程中,AI发生器和人类可以进行交流。我们通过使用该框架来研究共同创造性通信全球广播的一个维度与本地创意意图通过讲故事的上下文来说明创意范围的框架。
translated by 谷歌翻译
我们专注于创建强化学习代理的任务,这是固有的解释 - 能够通过大声思考,在执行任务并分析后HOC后产生因果解释的整个轨迹来产生直接的当地解释。这种分层解释的加强学习代理(Hex-RL),以互动虚构,基于文本的游戏环境运营,其中代理人使用文本自然语言对世界感知和行为。这些游戏通常被构造为具有长期依赖的谜题或任务,其中代理商必须完成一系列行动,以便在其中提供理想的环境,以测试代理商解释其行为的能力。我们的代理旨在使用基于提取的符号知识图形的状态表示来处理作为一流的公民的可解释性,其与分层图注意机制耦合,该方法指向大多数影响行动选择的内部图形表示中的事实。实验表明,该代理提供了对强强基线的显着改进的解释,这是人类参与者通常不熟悉环境的评分,同时也匹配最先进的任务表现。
translated by 谷歌翻译
大型语言模型越来越能够通过相对较少的特定任务的监督产生流畅的出现文本。但这些模型可以准确解释分类决策吗?我们考虑使用少量人写的例子(即,以几滴方式)生成自由文本解释的任务。我们发现(1)创作更高质量的例子,以提示导致更高质量的世代; (2)令人惊讶的是,在头到头比较中,人群公司通常更喜欢GPT-3生成的解释,以众包中包含的人性写入的解释。然而,Crowdworker评级也表明,虽然模型产生了事实,语法和充分的解释,但它们具有改进的空间,例如沿着提供新颖信息和支持标签的轴。我们创建了一种管道,该管道将GPT-3与监督过滤器结合起来,该过滤器通过二进制可接受性判断来包含人类循环。尽管具有重要的主观性内在的判断可接受性,但我们的方法能够始终如一地过滤人类可接受的GPT-3生成的解释。
translated by 谷歌翻译
自动化讲故事长期以来一直抓住了研究人员在日常生活中的叙述中的难以感受。但是,在用神经语言模型产生叙述时,保持一致性并保持对特定结束的特定结束挑战。在本文中,我们介绍了读者模型(Storm)的故事生成,这是一个框架,其中读者模型用于推理故事的推理应该进步。读者模型是人类读者相信关于虚构故事世界的概念,实体和关系的人。我们展示了如何作为知识图表所代表的明确读者模型提供故事一致性,并以实现给定的故事世界目标的形式提供可控性。实验表明,我们的模型产生了显着更加连贯和主题的故事,优于尺寸的基线,包括情节合理性并保持主题。我们的系统也优于在未订购的情况下在组成给定概念时占总引导的故事生成基线。
translated by 谷歌翻译
大型预先训练的生成语言模型的出现为AI故事的常见框架通过采样模型来创建持续故事的序列。然而,单独的抽样对故事产生不足。特别是,很难指导语言模型来创建故事以达到特定的目标事件。我们提出了两种在深增强学习和奖励塑造的自动化技术,以控制计算机生成的故事的情节。首先利用近端策略优化来微调现有的基于变换器的语言模型,以生成文本持续,而且是寻求目标。第二种提取来自展开故事的知识图,该故事由策略网络使用,具有图注意选择由语言模型生成的候选继续。我们报告了与故事如何实现给定的目标事件以及与基线和消融相比的一致性和整体故事质量的人类参与者排名的自动化指标报告。
translated by 谷歌翻译
基于神经语言模型的自动化故事生成方法遭受了两个重要的限制。首先,基于语言模型的故事生成器通常不适用于给定的目标或结束。其次,当故事变长时,他们经常失去一致。我们提出了一种新的自动化故事生成方法,将问题视为生成的问答之一。我们所提出的故事生成系统从封装故事的最终事件的句子开始。然后系统迭代地(1)分析描述最新事件的文本,(2)生成关于“为什么”一个字符正在执行他们在事件中执行的事情的问题,然后(3)尝试生成另一个前面的回答这个问题的事件。
translated by 谷歌翻译
有监督的深度学习算法具有自动化筛查,监视和分级的医学图像的巨大潜力。但是,培训表现模型通常需要大量的标记数据,这在医疗领域几乎无法获得。自我监督的对比框架通过首先从未标记的图像中学习来放松这种依赖性。在这项工作中,我们表明使用两种对比方法进行了预处理,即SIMCLR和BYOL,就与年龄相关的黄斑变性(AMD)的临床评估有关深度学习的实用性。在实验中,使用两个大型临床数据集,其中包含7,912名患者的170,427个光学相干断层扫描(OCT)图像,我们评估了从AMD阶段和类型分类到功能性终点的七个下游任务,从七个下游任务进行预处理,从在标签较少的七个任务中,六个任务中有六个显着增加。但是,标准的对比框架具有两个已知的弱点,这些弱点不利于医疗领域的预处理。用于创建正面对比对的几种图像转换不适用于灰度医学扫描。此外,医学图像通常描绘了相同的解剖区域和疾病的严重程度,从而导致许多误导性负面对。为了解决这些问题,我们开发了一种新颖的元数据增强方法,该方法利用了丰富的固有可用患者信息集。为此,我们采用了患者身份,眼睛位置(即左或右)和时间序列数据的记录,以指示典型的不可知的对比关系。通过利用这种经常被忽视的信息,我们元数据增强的对比预处理可带来进一步的好处,并且在下游七个任务中有五个任务中的五个中的五分之一。
translated by 谷歌翻译
光学相干断层扫描(OCT)是一种非侵入性的3D模态,广泛用于视网膜的眼科。在OCT上实现自动化的解剖学视网膜层分割对于检测和监测不同视网膜疾病(如年龄相关的黄斑病(AMD)或糖尿病性视网膜病)很重要。但是,大多数最先进的层分割方法基于纯监督的深度学习,需要大量的像素级注释数据,这些数据昂贵且难以获得。考虑到这一点,我们将半监督的范式介绍到视网膜层分割任务中,该任务利用大规模未标记数据集中存在的信息以及解剖学先验。特别是,一种新型的完全可区分的方法用于将表面位置回归转换为像素结构化分割,从而使以耦合方式同时使用1D表面和2D层表示来训练模型。特别是,这些2D分割被用作解剖因素,与学习的样式因子一起组成了用于重建输入图像的分离表示。同时,我们建议一组解剖学先验,以改善有限的标记数据时,可以改善网络训练。我们在使用中间和湿amd的现实世界中的扫描数据集上证明了我们的方法在使用我们的完整训练集时优于最先进带有标记数据的一部分。
translated by 谷歌翻译