基于神经语言模型的自动化故事生成方法遭受了两个重要的限制。首先,基于语言模型的故事生成器通常不适用于给定的目标或结束。其次,当故事变长时,他们经常失去一致。我们提出了一种新的自动化故事生成方法,将问题视为生成的问答之一。我们所提出的故事生成系统从封装故事的最终事件的句子开始。然后系统迭代地(1)分析描述最新事件的文本,(2)生成关于“为什么”一个字符正在执行他们在事件中执行的事情的问题,然后(3)尝试生成另一个前面的回答这个问题的事件。
translated by 谷歌翻译
自动化讲故事长期以来一直抓住了研究人员在日常生活中的叙述中的难以感受。但是,在用神经语言模型产生叙述时,保持一致性并保持对特定结束的特定结束挑战。在本文中,我们介绍了读者模型(Storm)的故事生成,这是一个框架,其中读者模型用于推理故事的推理应该进步。读者模型是人类读者相信关于虚构故事世界的概念,实体和关系的人。我们展示了如何作为知识图表所代表的明确读者模型提供故事一致性,并以实现给定的故事世界目标的形式提供可控性。实验表明,我们的模型产生了显着更加连贯和主题的故事,优于尺寸的基线,包括情节合理性并保持主题。我们的系统也优于在未订购的情况下在组成给定概念时占总引导的故事生成基线。
translated by 谷歌翻译
Automated plot generation is the challenge of generating a sequence of events that will be perceived by readers as the plot of a coherent story. Traditional symbolic planners plan a story from a goal state and guarantee logical causal plot coherence but rely on a library of hand-crafted actions with their preconditions and effects. This closed world setting limits the length and diversity of what symbolic planners can generate. On the other hand, pre-trained neural language models can generate stories with great diversity, while being generally incapable of ending a story in a specified manner and can have trouble maintaining coherence. In this paper, we present an approach to story plot generation that unifies causal planning with neural language models. We propose to use commonsense knowledge extracted from large language models to recursively expand a story plot in a backward chaining fashion. Specifically, our system infers the preconditions for events in the story and then events that will cause those conditions to become true. We performed automatic evaluation to measure narrative coherence as indicated by the ability to answer questions about whether different events in the story are causally related to other events. Results indicate that our proposed method produces more coherent plotlines than several strong baselines.
translated by 谷歌翻译
大型预先训练的生成语言模型的出现为AI故事的常见框架通过采样模型来创建持续故事的序列。然而,单独的抽样对故事产生不足。特别是,很难指导语言模型来创建故事以达到特定的目标事件。我们提出了两种在深增强学习和奖励塑造的自动化技术,以控制计算机生成的故事的情节。首先利用近端策略优化来微调现有的基于变换器的语言模型,以生成文本持续,而且是寻求目标。第二种提取来自展开故事的知识图,该故事由策略网络使用,具有图注意选择由语言模型生成的候选继续。我们报告了与故事如何实现给定的目标事件以及与基线和消融相比的一致性和整体故事质量的人类参与者排名的自动化指标报告。
translated by 谷歌翻译
Storytelling and narrative are fundamental to human experience, intertwined with our social and cultural engagement. As such, researchers have long attempted to create systems that can generate stories automatically. In recent years, powered by deep learning and massive data resources, automatic story generation has shown significant advances. However, considerable challenges, like the need for global coherence in generated stories, still hamper generative models from reaching the same storytelling ability as human narrators. To tackle these challenges, many studies seek to inject structured knowledge into the generation process, which is referred to as structure knowledge-enhanced story generation. Incorporating external knowledge can enhance the logical coherence among story events, achieve better knowledge grounding, and alleviate over-generalization and repetition problems in stories. This survey provides the latest and comprehensive review of this research field: (i) we present a systematical taxonomy regarding how existing methods integrate structured knowledge into story generation; (ii) we summarize involved story corpora, structured knowledge datasets, and evaluation metrics; (iii) we give multidimensional insights into the challenges of knowledge-enhanced story generation and cast light on promising directions for future study.
translated by 谷歌翻译
对事件序列的预测对于信息检索和自然语言处理中的许多现实世界应用至关重要。在事件序列预测中,未来的活动生成(FEG)是一项具有挑战性的任务,因为它不仅需要流利的文本生成,而且需要常识性推理才能保持整个事件故事的逻辑连贯性。在本文中,我们提出了一个新颖的可解释的FEG框架COEP。它突出并整合了两种类型的事件知识,对直接事件事件关系的顺序知识以及推论知识,这些知识反映了事件之间的中间角色心理学(例如意图,原因,反应),这些心理本质地将故事推向了故事。为了减轻知识遗忘问题,我们为每种类型的知识设计了两个模块,即IM和GM,它们是通过及时调整组合的。首先,IM专注于理解推论知识,以产生常识性解释并为通用汽车提供软提示向量。我们还设计了一种对比歧视器,以提高概括能力。其次,GM通过用IM的指导对直接顺序知识进行建模来生成未来事件。自动和人类评估表明,我们的方法可以产生更连贯,具体和逻辑的未来事件。
translated by 谷歌翻译
Recent developments in natural language generation (NLG) using neural language models have brought us closer than ever to the goal of building AI-powered creative writing tools. However, most prior work on human-AI collaboration in the creative writing domain has evaluated new systems with amateur writers, typically in contrived user studies of limited scope. In this work, we commissioned 13 professional, published writers from a diverse set of creative writing backgrounds to craft stories using Wordcraft, a text editor with built-in AI-powered writing assistance tools. Using interviews and participant journals, we discuss the potential of NLG to have significant impact in the creative writing domain--especially with respect to brainstorming, generation of story details, world-building, and research assistance. Experienced writers, more so than amateurs, typically have well-developed systems and methodologies for writing, as well as distinctive voices and target audiences. Our work highlights the challenges in building for these writers; NLG technologies struggle to preserve style and authorial voice, and they lack deep understanding of story contents. In order for AI-powered writing assistants to realize their full potential, it is essential that they take into account the diverse goals and expertise of human writers.
translated by 谷歌翻译
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences. Existing methods to control for story preference utilize prompt engineering which is labor intensive and often inconsistent. They may also use logit-manipulation methods which require annotated datasets to exist for the desired attributes. To address these issues, we first train a contrastive bi-encoder model to align stories with corresponding human critiques, named CARP, building a general purpose preference model. This is subsequently used as a reward function to fine-tune a generative language model via reinforcement learning. However, simply fine-tuning a generative language model with a contrastive reward model does not always reliably result in a story generation system capable of generating stories that meet user preferences. To increase story generation robustness we further fine-tune the contrastive reward model using a prompt-learning technique. A human participant study is then conducted comparing generations from our full system, ablations, and two baselines. We show that the full fine-tuning pipeline results in a story generator preferred over a LLM 20x as large as well as logit-based methods. This motivates the use of contrastive learning for general purpose human preference modeling.
translated by 谷歌翻译
人工推理通常可以理解为两个系统之间的相互作用:直观和关联(“系统1”)和审议和逻辑(“系统2”)。神经序列模型 - 在执行复杂,结构化任务时越来越成功 - 表现出系统1的优点和故障模式:它们是快速和学习数据的模式,但通常不一致和不连贯。在这项工作中,我们通过添加系统2-Inspired逻辑推理,寻求一种轻量级,无培训的手段来改善现有系统1样序列模型。我们探讨了该主题的几种变体,其中通过符号推理模块检查来自神经序列模型的候选几代,可以通过符号推理模块来接受或拒绝几代人。我们的方法使用神经推理来介导神经系统1和逻辑系统2.导致强大的故事生成和接地的指示,表明这种方法可以增加神经基代的一致性和准确性。
translated by 谷歌翻译
大型预训练的语言模型已经表现出了产生现实文本的强大功能。但是,控制生成结果仍然具有挑战性。以前的方法,例如提示远远不足,这限制了语言模型的使用。为了解决这一挑战,我们提出了一种创新的方法,逆提示,更好地控制文本生成。逆提示的核心思想是使用生成的文本来在波束搜索期间反转提示,这增强了提示和生成文本之间的相关性,并提供了更好的可控性。经验上,我们预先培训了大规模的汉语模型,在开放式诗歌生成和开放式长形问题的任务上使用人力评估进行系统研究。我们的研究结果表明,我们的提出方法显着优于基线,而我们的发电质量与某些任务中的某些任务接近人类性能。叙述者可以在https://pretrain.aminer.cn/apps/poetry.html上尝试我们的诗歌生成演示,而我们的QA演示可以在https://pretrain.aminer.cn/app/qa找到。对于研究人员来说,代码是在https://github.com/thudm/inverseprompting中提供的。
translated by 谷歌翻译
最近已被证明大型语言模型在各种任务集中获得合理的零射普通化(Brown等,2020)。它已经假设这是语言模型的隐式多任务学习的结果,在语言模型中的预押(Radford等,2019)。可以通过明确的多任务学习直接引起零拍常规化?为了以缩放测试这个问题,我们开发一个系统,以便轻松地将任何自然语言任务映射到人类可读的提示表单中。我们转换一组大量的监督数据集,每个数据集都有多个提示,具有不同的措辞。这些提示的数据集允许基准测试模型执行完全看不见的任务的能力。我们介绍了一个普拉克尔编码器 - 解码器模型(Raffel等,2020; Lester等,2021),覆盖各种任务。该模型在多个标准数据集中达到强大的零点性能,通常优于其尺寸的型号超过16倍。此外,我们的方法对来自Big-替补基准测试的任务子集具有强烈性能,优于其尺寸的6倍。所有提示和培训的型号都可以在https://github.com/ bigscience-workshop / protectsource / httpsource / https://huggingface.co/bigscience/t0pp。
translated by 谷歌翻译
深度神经语言模型的最新进展与大规模数据集的能力相结合,加速了自然语言生成系统的发展,这些系统在多种任务和应用程序上下文中产生流利和连贯的文本(在各种成功程度上)。但是,为所需的用户控制这些模型的输出仍然是一个开放的挑战。这不仅对于自定义生成语言的内容和样式至关重要,而且对于他们在现实世界中的安全可靠部署至关重要。我们提出了一项关于受约束神经语言生成的新兴主题的广泛调查,在该主题中,我们通过区分条件和约束(后者是在输出文本上而不是输入的可检验条件),正式定义和分类自然语言生成问题,目前是可检验的)约束文本生成任务,并查看受限文本生成的现有方法和评估指标。我们的目的是强调这个新兴领域的最新进展和趋势,以告知最有希望的方向和局限性,以推动受约束神经语言生成研究的最新作品。
translated by 谷歌翻译
预训练的语言模型(PLM)无法生成长形式的叙事文本,因为它们不考虑全局结构。结果,生成的文本通常是不巧妙的,重复的或缺乏内容的。故事发电的最新工作以提示,关键字或语义框架的形式重新引入了明确的内容计划。经过大型平行语料库的培训,这些模型可以生成更合乎逻辑的事件序列,从而产生更满足的故事。但是,这些中间表示通常不使用自然语言,并且不需要微调就无法使用。我们建议使用现成的PLM生成故事情节,同时保持内容计划的好处,以产生凝聚力和满足的故事。我们提出的方法ScratchPlot首先提示PLM构成内容计划。然后,我们生成故事的身体并以内容计划结束。此外,我们通过使用其他PLM来对生成的(故事,结尾)对进行排名。我们用各种基线基准测试我们的方法,并在人类和自动评估中取得了卓越的结果。
translated by 谷歌翻译
We propose the Detailed Outline Control (DOC) framework for improving long-range plot coherence when automatically generating several-thousand-word-long stories. DOC consists of two complementary components: a detailed outliner and a detailed controller. The detailed outliner creates a more detailed, hierarchically structured outline, shifting creative burden from the main drafting procedure to the planning stage. The detailed controller ensures the more detailed outline is still respected during generation by controlling story passages to align with outline details. In human evaluations of automatically generated stories, DOC substantially outperforms a strong Re3 baseline (Yang et al., 2022) on plot coherence (22.5% absolute gain), outline relevance (28.2%), and interestingness (20.7%). Humans also judged DOC to be much more controllable in an interactive generation setting.
translated by 谷歌翻译
Recent advances in deep learning research, such as transformers, have bolstered the ability for automated agents to generate creative texts similar to those that a human would write. By default, transformer decoders can only generate new text with respect to previously generated text. The output distribution of candidate tokens at any position is conditioned on previously selected tokens using a self-attention mechanism to emulate the property of autoregression. This is inherently limiting for tasks such as controllable story generation where it may be necessary to condition on future plot events when writing a story. In this work, we propose Future Sight, a method for finetuning a pretrained generative transformer on the task of future conditioning. Transformer decoders are typically pretrained on the task of completing a context, one token at a time, by means of self-attention. Future Sight additionally enables a decoder to attend to an encoded future plot event. This motivates the decoder to expand on the context in a way that logically concludes with the provided future. During inference, the future plot event can be written by a human author to steer the narrative being generated in a certain direction. We evaluate the efficacy of our approach on a story generation task with human evaluators.
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译
我们微调GPT-3使用基于文本的Web浏览环境来回答长形问题,允许模型搜索和导航Web。通过建立任务,以便通过人类执行,我们能够使用模仿学习培训在任务上的模型,然后通过人体反馈优化答案质量。为了使人为评估事实精度更容易,模型必须在浏览支持答案时收集引用。我们在ELI5上培训并评估我们的模型,Reddit用户提出的问题数据集。我们的最佳模型是通过使用行为克隆进行微调GPT-3获得的,然后对训练训练的奖励模型进行拒绝采样来获得以预测人类偏好。这种模式的答案是人类56%的答案,我们的人类示威者的时间和69%的时间到Reddit的最高投票答复。
translated by 谷歌翻译
许多政府举措(例如欧盟的GDPR)正在得出结论,即现代软件系统的越来越复杂程度必须与对这些工具的影响评估的一些权利和指标形成鲜明对比,使人们能够理解和监督产出自动化决策系统。可解释的ai诞生于允许人类探索和理解复杂系统的内部工作的途径。但是,建立什么是解释和客观地评估可解释性,不是琐碎的任务。通过本文,我们提出了一种新的模型 - 不可知性的指标,以测量以客观方式测量(正确)信息的解释程度,利用普通语言哲学的特定理论模型,称为ACHINSTEIN的解释理论,通过依赖于算法实现知识图提取和信息检索的深语模型。为了了解这种度量是否实际表现为可解释性,我们已经设计了一些实验和用户研究,涉及超过160名参与者评估了使用包括人工神经网络的着名AI技术的医疗保健和金融的基于医疗保健和金融的基于医疗保健系统和treeshap。我们获得的结果非常令人鼓舞,这表明我们拟议的测量可解释程度的指标对若干情景是强大的,并且最终可以利用自动决策系统的合法影响评估。
translated by 谷歌翻译
近年来带来了对自然语言理解领域的勤义代表和推理的重新兴趣。新的致辞知识图表(CSKG)的发展是这些进步的核心,因为他们的不同事实可以通过机器学习模型来解决新的和具有挑战性的任务。与此同时,由于全面地涵盖了一般勤杂朗知识所需的大规模规模,对这些资源的质量和覆盖率仍存在疑问。在这项工作中,我们将手动构建的CSKGS分配在NLP代理商遇到的所有情况下,我们将永远不会实现适用所需的覆盖范围。因此,我们提出了一种新的评估框架,用于测试KGS的效用,基于如何从中学习有效的隐式知识表示。通过这一新目标,我们提出了一个含有知识的全新CSKG的新CSKG,该知识不容易获得预用的语言模型。我们与其他领先的CSKG相比,评估其属性,表现了对勤杂朗语言知识资源的第一个大规模对研究。接下来,我们显示原子2020更适合培训知识模型,可以为新的,看不见的实体和事件产生准确,代表知识。最后,通过人类评估,我们表明,尽管使用超过430倍的参数,但GPT-3(175B参数)的几次射击性能较低,而令人印象深刻,令人印象深刻,令人印象深刻,令人印象深刻,仍然低于原子型2020的巴特的知识模型。
translated by 谷歌翻译