Our education system comprises a series of curricula. For example, when we learn mathematics at school, we learn in order from addition, to multiplication, and later to integration. Delineating a curriculum for teaching either a human or a machine shares the underlying goal of maximizing the positive knowledge transfer from early to later tasks and minimizing forgetting of the early tasks. Here, we exhaustively surveyed the effect of curricula on existing continual learning algorithms in the class-incremental setting, where algorithms must learn classes one at a time from a continuous stream of data. We observed that across a breadth of possible class orders (curricula), curricula influence the retention of information and that this effect is not just a product of stochasticity. Further, as a primary effort toward automated curriculum design, we proposed a method capable of designing and ranking effective curricula based on inter-class feature similarities. We compared the predicted curricula against empirically determined effectual curricula and observed significant overlaps between the two. To support the study of a curriculum designer, we conducted a series of human psychophysics experiments and contributed a new Continual Learning benchmark in object recognition. We assessed the degree of agreement in effective curricula between humans and machines. Surprisingly, our curriculum designer successfully predicts an optimal set of curricula that is effective for human learning. There are many considerations in curriculum design, such as timely student feedback and learning with multiple modalities. Our study is the first attempt to set a standard framework for the community to tackle the problem of teaching humans and machines to learn to learn continuously.
translated by 谷歌翻译
VQA是一项雄心勃勃的任务,旨在回答任何与图像有关的问题。但是,实际上,由于用户的需求不断更新,并且该系统必须实施新功能,因此很难为所有人构建这样的系统。因此,持续学习(CL)能力是开发高级VQA系统的必要条件。最近,先锋工作将一个VQA数据集分为不相交的答案集以研究此主题。但是,VQA上的CL不仅涉及标签集的扩展(新答案集)。在将VQA系统部署到新环境(新的视觉场景)以及如何回答需要新功能的问题(新问题类型)时,研究如何回答问题至关重要。因此,我们提出了Clove,这是一个在视觉问题答案上连续学习的基准,其中包含上述两个CL方案的场景和功能收入设置。在方法论方面,VQA和分类的CL之间的主要区别在于,前者还涉及扩大和防止忘记推理机制,而后者则集中在班级表示上。因此,我们提出了一种为CL上量身定制的基于无数据的基于Real-DATA的基于VQA上的方法,称为场景图作为符号重播的提示。它使用一段场景图作为提示,它可以重播伪场景图,以表示过去的图像以及相关的QA对。还提出了一个统一的VQA模型来利用当前和重播数据来增强其质量检查能力。最后,实验结果揭示了丁香的挑战,并证明了我们方法的有效性。数据集和代码将在https://github.com/showlab/clvqa上找到。
translated by 谷歌翻译
尽管已经提出了几种方法来实现领域泛化的艰巨任务,但了解使这项任务挑战的原因很少受到关注。在这里,我们提出semanticdg(语义域概括):具有15个具有相同几何形状,场景布局和摄像机参数与流行的3D Scannet数据集的基准标准,但具有照明,材料和视图点的控制域移动。使用此基准,我们独立研究了这些语义转变对概括的影响。视觉识别模型很容易推广到新颖的照明,但与材料和观点的分配变化斗争。受到人类视野的启发,我们假设场景上下文可以作为桥梁,以帮助模型跨越材料和观点域的转移,并提出上下文感知的视觉变压器,以及对材料和观点变化的对比损失,以解决这些域的变化。我们的方法(称为CDCNET)的表现优于现有域的概括方法,超过18%。作为关键的基准,我们还进行心理物理学实验,发现人类在照明,材料和观点上同样概括地概括了。此处介绍的基准和计算模型有助于了解与跨域的概括相关的挑战,并提供了向语义分布转移推断的初始步骤。我们在补充中包括所有数据和源代码。
translated by 谷歌翻译
视觉搜索是一项普遍存在的,通常挑战日常任务,是通过寻找家中的汽车钥匙或在人群中的朋友。一些经典搜索任务的有趣性属性是一种不对称性,使得在分散的人B中找到目标A可以比找到A中的B.为了阐明对视觉搜索中的不对称负责的机制,我们提出了一种占据目标的计算模型和将搜索图像作为输入,并在找到目标之前产生一系列眼睛移动。该模型将偏心依赖性视觉识别与目标相关的自上而下的提示集成在一起。我们将六种范式搜索任务中的人类行为与人类显示不对称的案式进行比较。如果没有先前接触刺激或任务特定的培训,则该模型提供了搜索不对称的合理机制。我们假设搜索不对称的极性来自自然环境的经验。我们通过培训模型在想象中的增强版本的模型进行测试,其中自然图像的偏差被移除或逆转。根据训练协议,搜索不对称的极性消失或被改变。本研究强调了神经网络模型可以出现古典感知特性如何,而无需特定于任务培训,而是由于馈送到模型的发育饮食的统计特性。所有源代码和数据都在https://github.com/kreimanlab/visualsearchaseSearmmetry上公开使用。
translated by 谷歌翻译
在不忘记以前的任务的情况下不断获得新知识的能力仍然是计算机视觉系统的具有挑战性问题。标准的持续学习基准专注于在离线设置中从静态IID图像学习。在这里,我们研究了一个更具挑战性和现实的在线持续学习问题,称为在线流学习。像人类一样,一些AI代理必须从连续的不重复数据流逐步学习。我们提出了一种新颖的模型,假设驱动的增强存储器网络(HAMN),其有效地使用“假设”的增强内存矩阵来巩固先前的知识,并重播重建的图像特征以避免灾难性的遗忘。与像素级和生成的重播方法相比,Hamn的优点是两倍。首先,基于假设的知识合并避免了图像像素空间中的冗余信息,并使内存使用更有效。其次,增强记忆中的假设可以重新用于学习新任务,提高泛化和转移学习能力。鉴于视频流缺乏在线增量类学习数据集,我们介绍并调整两个额外的视频数据集,Toybox和Ilab,用于在线流学习。我们还在Core50和在线CIFAR100数据集上评估我们的方法。我们的方法显着优于所有最先进的方法,同时提供更有效的内存使用情况。所有源代码和数据都在https://github.com/kreimanlab/augmem公开使用
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译