Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
蒙面自动编码器已成为自我监督的视觉表示学习的流行培训范例。这些模型随机掩盖了输入的一部分,并根据目标表示形式重建蒙版部分。在本文中,我们首先表明,对目标表示的仔细选择对于学习良好表示形式不必要,因为不同的目标倾向于得出相似的模型。在这一观察结果的驱动下,我们提出了一个多阶段掩盖的蒸馏管道,并使用随机初始化的模型作为教师,使我们能够有效地训练高容量模型,而无需仔细设计目标表示形式。有趣的是,我们进一步探索了能力较大的教师,获得具有出色转移能力的蒸馏学生。在分类,转移学习,对象检测和语义分割的不同任务上,使用自举的教师(DBOT)执行掩盖知识蒸馏的建议方法优于先前的自我监督方法,而不是非平凡的边缘。我们希望我们的发现以及拟议的方法能够激励人们重新考虑目标表征在预训练的蒙面自动编码器中的作用。
translated by 谷歌翻译
本文研究了从预先训练的模型,尤其是蒙面自动编码器中提取知识的潜力。我们的方法很简单:除了优化掩盖输入的像素重建损失外,我们还将教师模型的中间特征图与学生模型的中间特征图之间的距离最小化。此设计导致一个计算高效的知识蒸馏框架,给定1)仅使用一个少量可见的补丁子集,2)(笨拙的)教师模型仅需要部分执行,\ ie,\ ie,在前几个中,向前传播输入层,用于获得中间特征图。与直接蒸馏微型模型相比,提炼预训练的模型显着改善了下游性能。例如,通过将知识从MAE预先训练的VIT-L提炼为VIT-B,我们的方法可实现84.0%的Imagenet Top-1精度,表现优于直接将微型VIT-L蒸馏的基线,降低1.2%。更有趣的是,我们的方法即使具有极高的掩盖率也可以从教师模型中进行鲁棒性蒸馏:例如,在蒸馏过程中仅可见十个斑块,我们的VIT-B具有竞争力的前1个Imagenet精度为83.6%,在95%的掩盖率中,只有十个斑块。 ;令人惊讶的是,它仍然可以通过仅四个可见斑(98%的掩盖率)积极训练来确保82.4%的Top-1 Imagenet精度。代码和模型可在https://github.com/ucsc-vlaa/dmae上公开获得。
translated by 谷歌翻译
Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. These highperforming vision transformers are pre-trained with hundreds of millions of images using a large infrastructure, thereby limiting their adoption.In this work, we produce competitive convolution-free transformers by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with no external data.More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention. We show the interest of this token-based distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and models.
translated by 谷歌翻译
最近的蒙版图像建模(MIM)在自我监督学习(SSL)中受到了很多关注,该学习要求目标模型恢复输入图像的掩盖部分。尽管基于MIM的预训练方法在转移到许多下游任务时达到了新的最新性能,但可视化表明,与基于基于对比性学习预训练相比,学习的表示形式不可分割,尤其是相比。这激发了我们思考MIM预培训表示的线性可分离性是否可以进一步改善,从而改善了训练的性能。由于MIM和对比度学习倾向于利用不同的数据增强和培训策略,因此将这两个借口任务结合起来并不是微不足道的。在这项工作中,我们提出了一个新颖而灵活的预训练框架,名为Mimco,该框架通过两阶段的预培训结合了MIM和对比度学习。具体而言,MIMCO将预先训练的对比学习模型作为教师模型,并通过两种类型的学习目标进行了预培训:贴片级和图像级的重建损失。关于下游任务的广泛转移实验证明了我们的MIMCO预训练框架的出色表现。以VIT-S为例,当使用预先训练的MoCov3-Vit-S作为教师模型时,Mimco只需要100个时期的预训练时期即可达到Imagenet-1K上的82.53%Top-1 FineTuning精度,这表现优于表现最先进的自我监督学习对手。
translated by 谷歌翻译
蒙版的图像建模(MIM)学习具有非常好的微调性能的表示形式,掩盖了先前普遍的预训练方法,例如图像分类,实例对比度学习和图像文本对齐。在本文中,我们表明,通过以功能蒸馏(FD)形式进行简单的后处理,可以显着改善这些预训练方法的下部微调性能。功能蒸馏将旧表示形式转换为具有一些理想属性的新表示形式,就像MIM产生的表示一样。这些属性总共称为优化友好性,通过一组与注意力和优化相关的诊断工具来识别和分析。借助这些属性,新表示表现出强烈的微调性能。具体而言,对比度的自我监督学习方法在微调方面具有竞争力,就像最先进的蒙版图像建模(MIM)算法一样。剪辑模型的微调性能也得到了显着改善,夹子VIT-L模型达到\ TextBf {89.0%} TOP-1的ImagEnet-1K分类精度。在30亿参数SWINV2-G模型上,ADE20K语义分割的微调精度通过+1.5 miou提高到\ textbf {61.4 miou},创建了新记录。更重要的是,我们的工作为未来的研究提供了一种方法,可以将更多的精力集中在学习表现的通用性和可扩展性上,而不会与优化友好性相处,因为它可以很容易地增强。该代码将在https://github.com/swintransformer/feature-distillation上找到。
translated by 谷歌翻译
Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. These highperforming vision transformers are pre-trained with hundreds of millions of images using a large infrastructure, thereby limiting their adoption.In this work, we produce competitive convolutionfree transformers trained on ImageNet only using a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with no external data.We also introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention, typically from a convnet teacher. The learned transformers are competitive (85.2% top-1 acc.) with the state of the art on ImageNet, and similarly when transferred to other tasks. We will share our code and models.
translated by 谷歌翻译
Benefiting from masked visual modeling, self-supervised video representation learning has achieved remarkable progress. However, existing methods focus on learning representations from scratch through reconstructing low-level features like raw pixel RGB values. In this paper, we propose masked video distillation (MVD), a simple yet effective two-stage masked feature modeling framework for video representation learning: firstly we pretrain an image (or video) model by recovering low-level features of masked patches, then we use the resulting features as targets for masked feature modeling. For the choice of teacher models, we observe that students taught by video teachers perform better on temporally-heavy video tasks, while image teachers transfer stronger spatial representations for spatially-heavy video tasks. Visualization analysis also indicates different teachers produce different learned patterns for students. Motivated by this observation, to leverage the advantage of different teachers, we design a spatial-temporal co-teaching method for MVD. Specifically, we distill student models from both video teachers and image teachers by masked feature modeling. Extensive experimental results demonstrate that video transformers pretrained with spatial-temporal co-teaching outperform models distilled with a single teacher on a multitude of video datasets. Our MVD with vanilla ViT achieves state-of-the-art performance compared with previous supervised or self-supervised methods on several challenging video downstream tasks. For example, with the ViT-Large model, our MVD achieves 86.4% and 75.9% Top-1 accuracy on Kinetics-400 and Something-Something-v2, outperforming VideoMAE by 1.2% and 1.6% respectively. Code will be available at \url{https://github.com/ruiwang2021/mvd}.
translated by 谷歌翻译
我们引入了一个自我监督的视觉表示模型BEIT,该模型代表来自图像变压器的双向编码器表示。在Bert在自然语言处理区域中开发后,我们提出了一项掩盖的图像建模任务,以预识视觉变压器。具体而言,每个图像在我们的预训练中具有两个视图,即图像贴片(例如16x16像素)和视觉令牌(即离散令牌)。我们首先将原始图像“将”“令牌化”到视觉令牌中。然后,我们随机掩盖了一些图像补丁并将其喂入骨干变压器中。预训练的目标是根据损坏的图像补丁恢复原始的视觉令牌。在预训练BEIT之后,我们通过将任务层附加在预审计的编码器上,直接通过将任务层附加到下游任务上的模型参数。图像分类和语义分割的实验结果表明,我们的模型通过以前的预训练方法实现了竞争结果。例如,基本大小的BEIT在Imagenet-1K上获得了83.2%的TOP-1精度,并以相同的设置优于划痕DEIT训练(81.8%)。此外,大尺寸的BEIT仅使用Imagenet-1K获得86.3%,即使在Imagenet-22K上进行预训练(85.2%),甚至超过了VIT-L。代码和预估计的模型可在https://aka.ms/beit上找到。
translated by 谷歌翻译
蒙版图像建模(MIM)通过恢复损坏的图像补丁,在自我监督的表示学习中表现出了令人印象深刻的结果。但是,大多数方法仍在低级图像像素上运行,这阻碍了对表示模型的高级语义的开发。在这项研究中,我们建议将富含语义的视觉令牌用作掩盖预测的重建目标,从而提供了一种系统的方式来促进MIM从像素级到语义级别。具体而言,我们引入了矢量定量的知识蒸馏以训练令牌仪,该蒸馏器将连续的语义空间离散为紧凑的代码。然后,我们通过预测掩盖图像贴片的原始视觉令牌来预处理变压器。此外,我们鼓励该模型将补丁信息明确汇总到全局图像表示中,该图像表示该设施线性探测。图像分类和语义分割的实验表明,我们的方法优于所有方法比较MIM方法。在ImagEnet-1K(224尺寸)上,基本大小的BEIT V2可实现85.5%的top-1精度,用于微调和80.1%的线性探测的TOP-1精度。大尺寸的BEIT V2获得了ImagEnet-1K(224尺寸)微调的最高1个TOP-1精度,用于语义分割的ADE20K上获得了56.7%MIOU。代码和预估计的模型可在https://aka.ms/beit上找到。
translated by 谷歌翻译
通过开发基于生成的自我监督学习(SSL)方法,例如Beit和Mae,如何通过掩盖输入图像的随机补丁并重建缺失信息来学习良好的表示形式。但是,Beit和Peco需要一个“预先陈述”阶段,以生成用于掩盖补丁代表的离散代码手册。 MAE不需要预训练的代码簿流程,但是将像素设置为重建目标可能会引入前训练和下游任务之间的优化差距,即良好的重建质量可能并不总是会导致模型的高描述能力。考虑到上述问题,在本文中,我们提出了一个简单的自鉴定的蒙面自动编码器网络,即SDAE。 SDAE由一个使用编码器解码器结构的学生分支组成,以重建缺失的信息,并制作一个师范分支,生产蒙版代币的潜在表示。我们还分析了如何从信息瓶颈的角度来为教师分支机构建立潜在代表性的好看法。之后,我们提出了一种多重掩蔽策略,以提供多个掩盖视图,并具有平衡的信息以提高性能,这也可以降低计算复杂性。我们的方法很好地概括了:只有300个时期预训练,香草vit-base模型在Imagenet-1K分类上达到了84.1%的微调精度,48.6 MIOU在ADE20K细分方面和48.9 coco检测中的MAP,它超过了其他方法,从而超过其他方法。通过相当大的边距。代码可从https://github.com/abrahamyabo/sdae获得。
translated by 谷歌翻译
在过去的几年中,基于自我注意力的变压器模型一直在主导许多计算机视觉任务。它们的出色模型质量在很大程度上取决于标记过多的图像数据集。为了减少对大型标记数据集的依赖,基于重建的掩盖自动编码器正在获得流行,这些自动编码器从未标记的图像中学习了高质量的可转移表示形式。出于同样的目的,最近弱监督的图像预处理方法探索了图像随附的文本字幕的语言监督。在这项工作中,我们提出了对语言辅助代表的预读图像,称为米兰。我们的预处理目标不是预测原始像素或低级别的特征,而是用使用字幕监督获得的大量语义信号来重建图像特征。此外,为了适应我们的重建目标,我们提出了更有效的促使解码器体系结构和语义意识到的掩码采样机制,从而进一步推进了预告片模型的传输性能。实验结果表明,米兰的精度比以前的工作更高。当掩盖的自动编码器在ImagEnet-1K数据集上进行了预估计并以224x224的输入分辨率进行了填充时,米兰在VITB/16上的前1位准确性达到了85.4%,使以前的先前最先前的艺术品达到1%。在下游的语义分割任务中,米兰在ADE20K数据集上使用VIT-B/16骨架达到52.7 MIOU,表现优于先前的蒙版预读结果4分。
translated by 谷歌翻译
本文探讨了贝尔视觉变压器预训练的更好的码本。最近的工作成功地转移了从NLP到视野领域的BERT预训练。它直接采用一个简单的离散VAE作为视觉销售器,但尚未考虑由此产生的视觉令牌的语义水平。相比之下,NLP字段中的离散令牌是自然的高度语义。这种差异激励我们学习一个感知码本。我们惊奇地找到了一个简单而有效的想法:在DVAE训练期间强制执行感知相似性。我们证明,所提出的感知码本生成的视觉令牌确实表现出更好的语义含义,随后有助于预训练在各种下游任务中实现卓越的转移性能。例如,我们在Imagenet-1K上实现了84.5前1个精度,vit-B骨干,优于竞争方法Beit +1.3,具有相同的训练纪元。它还可以通过+1.3框AP和+1.0掩模AP,在ADE20K上的语义细分,在ADE20K上提高对象检测和分割任务的性能,+1.0 miou,代码和型号将在\ url {https:// github.com/microsoft/peco}。
translated by 谷歌翻译
变形金刚和蒙版语言建模在计算机视觉中很快被视为视觉变压器和蒙版图像建模(MIM)。在这项工作中,我们认为由于图像中令牌的数量和相关性,图像令牌掩盖与文本中的令牌掩盖有所不同。特别是,为了为MIM产生具有挑战性的借口任务,我们主张从随机掩盖到知情掩盖的转变。我们在基于蒸馏的MIM的背景下开发并展示了这一想法,其中教师变压器编码器生成了一个注意力图,我们用它来指导学生为学生指导掩盖。因此,我们引入了一种新颖的掩蔽策略,称为注意引导蒙版(ATTMASK),我们证明了其对基于密集蒸馏的MIM以及基于普通蒸馏的自然剥离的自助力学习的有效性。我们确认ATTMASK可以加快学习过程,并提高各种下游任务的性能。我们在https://github.com/gkakogeorgiou/attmask上提供实现代码。
translated by 谷歌翻译
We introduce submodel co-training, a regularization method related to co-training, self-distillation and stochastic depth. Given a neural network to be trained, for each sample we implicitly instantiate two altered networks, ``submodels'', with stochastic depth: we activate only a subset of the layers. Each network serves as a soft teacher to the other, by providing a loss that complements the regular loss provided by the one-hot label. Our approach, dubbed cosub, uses a single set of weights, and does not involve a pre-trained external model or temporal averaging. Experimentally, we show that submodel co-training is effective to train backbones for recognition tasks such as image classification and semantic segmentation. Our approach is compatible with multiple architectures, including RegNet, ViT, PiT, XCiT, Swin and ConvNext. Our training strategy improves their results in comparable settings. For instance, a ViT-B pretrained with cosub on ImageNet-21k obtains 87.4% top-1 acc. @448 on ImageNet-val.
translated by 谷歌翻译
蒙面图像建模(MIM)在各种视觉任务上取得了令人鼓舞的结果。但是,学到的表示形式的有限可区分性表现出来,使一个更强大的视力学习者还有很多值得一试。为了实现这一目标,我们提出了对比度蒙面的自动编码器(CMAE),这是一种新的自我监督的预训练方法,用于学习更全面和有能力的视觉表示。通过详细统一的对比度学习(CL)和掩盖图像模型(MIM),CMAE利用了它们各自的优势,并以强大的实例可辨别性和局部的可感知来学习表示形式。具体而言,CMAE由两个分支组成,其中在线分支是不对称的编码器编码器,而目标分支是动量更新的编码器。在培训期间,在线编码器从蒙面图像的潜在表示中重建了原始图像,以学习整体特征。馈送完整图像的目标编码器通过其在线学习通过对比度学习增强了功能可区分性。为了使CL与MIM兼容,CMAE引入了两个新组件,即用于生成合理的正视图和特征解码器的像素移位,以补充对比度对的特征。多亏了这些新颖的设计,CMAE可以有效地提高了MIM对应物的表示质量和转移性能。 CMAE在图像分类,语义分割和对象检测的高度竞争基准上实现了最先进的性能。值得注意的是,CMAE-BASE在Imagenet上获得了$ 85.3 \%$ $ TOP-1的准确性和$ 52.5 \%$ MIOU的ADE20K,分别超过了$ 0.7 \%\%$ $和$ 1.8 \%$ $。代码将公开可用。
translated by 谷歌翻译
我们提出了引导蒙面的自动编码器(bootmae),这是一种新的视觉BERT预训练方法。 Bootmae用两个核心设计改进了原始的蒙版自动编码器(MAE):1)动量编码器,该动量编码器可作为额外的BERT预测目标提供在线功能; 2)试图降低编码器的压力以记住目标特定信息的靶向解码器。第一个设计的动机是通过观察到的,即使用预定的MAE提取特征,因为掩盖令牌的BERT预测目标可以实现更好的预训练性能。因此,我们与原始的MAE编码器并行添加了一个动量编码器,该编码器通过将其自己的表示作为BERT预测目标来引导预处理性能。在第二个设计中,我们将特定于目标的信息(例如,未掩盖贴片的像素值)直接传达到解码器中,以减少记住目标特定信息的编码器的压力。因此,编码器专注于语义建模,这是BERT预训练的目的,并且不需要浪费其在记住与预测目标相关的未掩盖令牌的信息时的能力。通过广泛的实验,我们的Bootmae在ImageNet-1k上获得了$ 84.2 \%$ $ $ $+0.8 \%$在同一预训练时期。 Bootmae还获得了$+1.0 $ MIOU在ADE20K上的语义细分和$+1.3 $ box ap,$+1.4 $+1.4 $ bask ap改进对象检测和可可数据集上的细分。代码在https://github.com/lightdxy/bootmae上发布。
translated by 谷歌翻译
本文提出了一个简单而有效的框架蒙版,该框架将新提出的掩盖自distillation纳入对比的语言图像预处理中。掩盖自distillation的核心思想是将表示从完整的图像提取到蒙版图像预测的表示形式。这种合并享有两个重要的好处。首先,掩盖的自我验证目标是本地贴片表示学习,这与视觉对比度的互补,专注于与文本相关的表示。二,掩盖的自我验证也与视觉语言对比符合训练目标的视野对比是一致的。视觉编码器用于功能对齐,因此能够学习本地语义从该语言中获得间接监督。我们提供了专门设计的实验,并进行了全面的分析,以验证这两个好处。从经验上讲,我们表明,当MaskClip应用于各种具有挑战性的下游任务时,可以在线性探测,填充和零拍摄中取得卓越的结果,并在语言编码器的指导下取得了卓越的结果。
translated by 谷歌翻译
本文显示屏蔽的自动化器(MAE)是可扩展的自我监督学习者,用于计算机愿景。我们的MAE方法很简单:我们掩盖输入图像的随机补丁并重建缺失像素。它基于两个核心设计。首先,我们开发一个不对称的编码器解码器架构,其中编码器仅在掩码的可见子集(没有掩码令牌)上,以及重量解码器,该重量解码器从潜像和掩码令牌重建原始图像。其次,我们发现掩蔽了高比例的输入图像,例如,75%,产生非凡和有意义的自我监督任务。耦合这两种设计使我们能够有效且有效地培训大型模型:我们加速培训(3倍或更多)并提高准确性。我们可扩展的方法允许学习概括的高容量模型:例如,Vanilla Vit-Maxim模型在使用Imagenet-1K数据的方法中实现最佳准确性(87.8%)。下游任务中的转移性能优于监督预培训并显示有前途的缩放行为。
translated by 谷歌翻译
图像BERT使用掩盖图像建模(MIM)预训练成为应对自我监督的表示学习的一种流行实践。一项开创性的作品将MIM作为一个视觉词汇作为分类任务,将连续的视觉信号用于离散的视觉令牌,并使用预先学习的DVAE将其标记为离散的视觉令牌。尽管有可行的解决方案,但不当离散化仍阻碍了图像预训练的进一步改善。由于图像离散化没有基本真相的答案,因此我们认为,即使可以获得更好的``令牌''',也不应使用唯一的令牌ID分配蒙面的补丁。在这项工作中,我们引入了改进的BERT风格图像预训练方法,即MC-BEIT,该方法执行MIM代理任务,以放松和精致的多选择培训目标。 Specifically, the multi-choice supervision for the masked image patches is formed by the soft probability vectors of the discrete token ids, which are predicted by the off-the-shelf image ``tokenizer'' and further refined by high-level inter-补丁感知诉诸于观察到类似的补丁应该分享其选择。关于分类,分割和检测任务的广泛实验证明了我们方法的优势,例如,预先培训的VIT-B在Imagenet-1K分类上达到了84.1%的TOP-1微调精度,49.2%AP^B和44.0%对象检测和可可的实例分割的AP^m,在ADE20K语义分段上为50.8%,表现优于竞争性对应物。该代码将在https://github.com/lixiaotong97/mc-beit上找到。
translated by 谷歌翻译