动机:在超声引导活检过程中检测前列腺癌是具有挑战性的。癌症的高度异质外观,超声伪像的存在和噪声都导致了这些困难。高频超声成像的最新进展 - 微拆卸 - 在高分辨率下大大提高了组织成像的能力。我们的目的是研究专门针对微型启动引导的前列腺癌活检的强大深度学习模型的发展。对于临床采用的模型,一个关键的挑战是设计一种可以确定癌症的解决方案,同时从粗略的组织病理学测量中学习引入弱标签的活检样品。方法:我们使用了从194例接受了前列腺活检的患者中获得的微型图像的数据集。我们使用共同教学范式来训练一个深层模型,以处理标签中的噪声,以及一种证据深度学习方法进行不确定性估计。我们使用准确性与信心的临床相关指标评估了模型的性能。结果:我们的模型实现了对预测不确定性的良好估计,而面积为88 $ \%$。联合结合中的共同教学和证据深度学习的使用比单独单独的不确定性估计明显更好。在不确定性估计中,我们还提供了与最先进的比较。
translated by 谷歌翻译
Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.
translated by 谷歌翻译
Solving the analytical inverse kinematics (IK) of redundant manipulators in real time is a difficult problem in robotics since its solution for a given target pose is not unique. Moreover, choosing the optimal IK solution with respect to application-specific demands helps to improve the robustness and to increase the success rate when driving the manipulator from its current configuration towards a desired pose. This is necessary, especially in high-dynamic tasks like catching objects in mid-flights. To compute a suitable target configuration in the joint space for a given target pose in the trajectory planning context, various factors such as travel time or manipulability must be considered. However, these factors increase the complexity of the overall problem which impedes real-time implementation. In this paper, a real-time framework to compute the analytical inverse kinematics of a redundant robot is presented. To this end, the analytical IK of the redundant manipulator is parameterized by so-called redundancy parameters, which are combined with a target pose to yield a unique IK solution. Most existing works in the literature either try to approximate the direct mapping from the desired pose of the manipulator to the solution of the IK or cluster the entire workspace to find IK solutions. In contrast, the proposed framework directly learns these redundancy parameters by using a neural network (NN) that provides the optimal IK solution with respect to the manipulability and the closeness to the current robot configuration. Monte Carlo simulations show the effectiveness of the proposed approach which is accurate and real-time capable ($\approx$ \SI{32}{\micro\second}) on the KUKA LBR iiwa 14 R820.
translated by 谷歌翻译
This work proposes a novel singularity avoidance approach for real-time trajectory optimization based on known singular configurations. The focus of this work lies on analyzing kinematically singular configurations for three robots with different kinematic structures, i.e., the Comau Racer 7-1.4, the KUKA LBR iiwa R820, and the Franka Emika Panda, and exploiting these configurations in form of tailored potential functions for singularity avoidance. Monte Carlo simulations of the proposed method and the commonly used manipulability maximization approach are performed for comparison. The numerical results show that the average computing time can be reduced and shorter trajectories in both time and path length are obtained with the proposed approach
translated by 谷歌翻译
在本文中,提出了一种基于静态障碍的环境中实验室规模3D龙门起重机的基于抽样的轨迹计划算法,并呈现了龙门起重机系统速度和加速度的范围。重点是针对差异化系统开发快速运动计划算法,在该系统中可以存储和重复使用中间结果以进行进一步的任务,例如重新植入。所提出的方法基于知情的最佳迅速探索随机树算法(知情RRT*),该算法用于构建轨迹树,这些树在开始和/或目标状态变化时重新使用。与最先进的方法相反,拟议的运动计划算法包含了线性二次最低时间(LQTM)本地计划者。因此,在提出的算法中直接考虑了动态特性,例如时间最优性和轨迹的平滑度。此外,通过集成分支和结合方法以在轨迹树上执行修剪过程,提出的算法可以消除树中没有促成更好解决方案的点中的点。这有助于抑制记忆消耗并降低运动(RE)计划期间的计算复杂性。 3D龙门起重机的经过验证的数学模型的仿真结果显示了所提出的方法的可行性。
translated by 谷歌翻译
血管内操作中的自主机器人有可能安全可靠地浏览循环系统,同时降低对人体错误的敏感性。但是,训练机器人的过程涉及许多挑战,例如由于机器学习算法的效率低下而导致的长期培训持续时间以及导管与血管内幻影之间的相互作用引起的安全问题。物理模拟器已在血管内手术的背景下使用,但通常用于员工培训,通常不符合自主插管目标。此外,大多数当前的模拟器都是封闭消息,它阻碍了安全可靠的自主系统的协作开发。在这项工作中,我们介绍了Cathsim,Cathsim是一种开源模拟环境,可加快用于自主内血管内导航的机器学习算法的开发。我们首先使用最先进的血管内机器人模拟高保真导管和主动脉。然后,我们在模拟环境中提供了导管和主动脉之间实时力传感的能力。我们通过使用两种流行的强化学习算法,近端策略优化(PPO)和软参与者(SAC)在两个主要动脉内执行两个不同的导管插入任务来验证我们的模拟器。实验结果表明,使用我们的开源模拟器,我们可以成功训练增强型学习剂以执行不同的自主插管任务。
translated by 谷歌翻译
图形神经网络已被证明可以为各种软件工程任务产生令人印象深刻的结果。但是,现有技术仍然有两个问题:(1)长期依赖性和(2)不同的代码组件在不应该的情况下被视为平等。为了解决这些问题,我们提出了一种表示代码为层次结构(代码层次结构)的方法,其中不同的代码组件在各个粒度级别分别表示。然后,为了处理每个表示级别的表示,我们设计了一个新颖的网络体系结构Echelon,它结合了异质图形变压器网络和基于树的卷积神经网络的优势,以学习具有代码依赖性信息丰富的抽象语法树。我们还提出了一个新颖的预处理目标,称为缺失子树预测以补充我们的代码层次结构。评估结果表明,我们的方法在三个任务中大大优于其他基准:任何代码完成,代码分类和代码克隆检测。
translated by 谷歌翻译
传统的切成薄片的瓦斯汀定义在两个具有矢量的概率度量之间。当比较图像的两个概率度量时,从业人员首先需要使用样品矩阵和投影矩阵之间的矩阵乘法来矢量化图像,然后将它们投影到一维空间。之后,通过平均两种相应的一维投影概率度量来评估切片的瓦斯汀。但是,这种方法有两个局限性。第一个限制是,图像的空间结构不会通过矢量化步骤有效地捕获。因此,后来的切片过程变得越来越难以收集差异信息。第二个限制是内存效率低下,因为每个切片方向是具有与图像相同的尺寸的向量。为了解决这些局限性,我们提出了针对基于卷积算子的图像的概率度量,用于切成薄片的新型切片方法。我们通过将步幅,扩张和非线性激活函数纳入卷积算子来得出卷积切成薄片的Wasserstein(CSW)及其变体。我们研究了CSW的指标及其样品复杂性,其计算复杂性以及与常规切片的Wasserstein距离的联系。最后,我们证明了CSW在比较图像和训练图像上的深层生成模型中的概率度量方面的良好性能比传统切成薄片的Wasserstein相比。
translated by 谷歌翻译
Here, we demonstrate how machine learning enables the prediction of comonomers reactivity ratios based on the molecular structure of monomers. We combined multi-task learning, multi-inputs, and Graph Attention Network to build a model capable of predicting reactivity ratios based on the monomers chemical structures.
translated by 谷歌翻译
We introduce an approach for the answer-aware question generation problem. Instead of only relying on the capability of strong pre-trained language models, we observe that the information of answers and questions can be found in some relevant sentences in the context. Based on that, we design a model which includes two modules: a selector and a generator. The selector forces the model to more focus on relevant sentences regarding an answer to provide implicit local information. The generator generates questions by implicitly combining local information from the selector and global information from the whole context encoded by the encoder. The model is trained jointly to take advantage of latent interactions between the two modules. Experimental results on two benchmark datasets show that our model is better than strong pre-trained models for the question generation task. The code is also available (shorturl.at/lV567).
translated by 谷歌翻译