动机:在超声引导活检过程中检测前列腺癌是具有挑战性的。癌症的高度异质外观,超声伪像的存在和噪声都导致了这些困难。高频超声成像的最新进展 - 微拆卸 - 在高分辨率下大大提高了组织成像的能力。我们的目的是研究专门针对微型启动引导的前列腺癌活检的强大深度学习模型的发展。对于临床采用的模型,一个关键的挑战是设计一种可以确定癌症的解决方案,同时从粗略的组织病理学测量中学习引入弱标签的活检样品。方法:我们使用了从194例接受了前列腺活检的患者中获得的微型图像的数据集。我们使用共同教学范式来训练一个深层模型,以处理标签中的噪声,以及一种证据深度学习方法进行不确定性估计。我们使用准确性与信心的临床相关指标评估了模型的性能。结果:我们的模型实现了对预测不确定性的良好估计,而面积为88 $ \%$。联合结合中的共同教学和证据深度学习的使用比单独单独的不确定性估计明显更好。在不确定性估计中,我们还提供了与最先进的比较。
translated by 谷歌翻译
Non-invasive prostate cancer detection from MRI has the potential to revolutionize patient care by providing early detection of clinically-significant disease (ISUP grade group >= 2), but has thus far shown limited positive predictive value. To address this, we present an MRI-based deep learning method for predicting clinically significant prostate cancer applicable to a patient population with subsequent ground truth biopsy results ranging from benign pathology to ISUP grade group~5. Specifically, we demonstrate that mixed supervision via diverse histopathological ground truth improves classification performance despite the cost of reduced concordance with image-based segmentation. That is, where prior approaches have utilized pathology results as ground truth derived from targeted biopsies and whole-mount prostatectomy to strongly supervise the localization of clinically significant cancer, our approach also utilizes weak supervision signals extracted from nontargeted systematic biopsies with regional localization to improve overall performance. Our key innovation is performing regression by distribution rather than simply by value, enabling use of additional pathology findings traditionally ignored by deep learning strategies. We evaluated our model on a dataset of 973 (testing n=160) multi-parametric prostate MRI exams collected at UCSF from 2015-2018 followed by MRI/ultrasound fusion (targeted) biopsy and systematic (nontargeted) biopsy of the prostate gland, demonstrating that deep networks trained with mixed supervision of histopathology can significantly exceed the performance of the Prostate Imaging-Reporting and Data System (PI-RADS) clinical standard for prostate MRI interpretation.
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译
在病理样本的全坡度图像(WSI)中注释癌区域在临床诊断,生物医学研究和机器学习算法开发中起着至关重要的作用。但是,产生详尽而准确的注释是劳动密集型,具有挑战性和昂贵的。仅绘制粗略和近似注释是一项容易得多的任务,成本较小,并且可以减轻病理学家的工作量。在本文中,我们研究了在数字病理学中完善这些近似注释以获得更准确的问题的问题。以前的一些作品探索了从这些不准确的注释中获得机器学习模型,但是很少有人解决改进问题,在这些问题中,应该明确识别和纠正错误标签的区域,并且所有这些都需要大量的培训样本(通常很大) 。我们提出了一种名为标签清洁多个实例学习(LC-MIL)标签的方法,可在不需要外部培训数据的情况下对单个WSI进行粗略注释。从WSI裁剪的带有不准确标签的贴片在多个实例学习框架内共同处理,从而减轻了它们对预测模型的影响并完善分割。我们对具有乳腺癌淋巴结转移,肝癌和结直肠癌样品的异质WSI进行的实验表明,LC-MIL显着完善了粗糙的注释,即使从单个幻灯片中学习,LC-MIL也优于最先进的替代方案。此外,我们证明了拟议方法如何有效地完善和改进病理学家绘制的真实注释。所有这些结果表明,LC-MIL是一种有前途的,轻巧的工具,可提供从粗糙注释的病理组中提供细粒的注释。
translated by 谷歌翻译
前列腺癌是美国男人的第二致致命癌症。虽然磁共振成像(MRI)越来越多地用于引导前列腺癌诊断的靶向活组织检查,但其效用仍然受到限制,因为假阳性和假否定的高率以及较低的读者协议。机器学习方法在前列腺MRI上检测和定位癌症可以帮助标准化放射科学诠释。然而,现有的机器学习方法不仅在模型架构中不等,而且还可以在用于模型培训的地面真理标签策略中。在这项研究中,我们比较不同的标记策略,即病理证实放射科标签,整个安装组织病理学图像上的病理学家标签,以及病变水平和像素级数字病理学家标签(先前验证了组织病理学图像上的深层学习算法以预测像素 - 整个安装组织病理学图像上的Gleason模式)。我们分析这些标签对训练有素的机器学习模型的性能的影响。我们的实验表明,用它们培训的(1)放射科标签和模型可能会错过癌症,或低估癌症程度,(2)与他们培训的数字病理学家标签和模型与病理学家标签有高度的一致性,而(3)用数字病理学家培训的模型标签在两种不同疾病分布的两种不同群组中达到最佳性能,而不管使用的模型建筑如何。数字病理学家标签可以减少与人类注释相关的挑战,包括劳动力,时间,和读者间变异性,并且可以通过使可靠的机器学习模型进行培训来检测和定位前列腺癌,帮助弥合前列腺放射学和病理学之间的差距在MRI。
translated by 谷歌翻译
人工智能(AI)辅助方法在风险领域(例如疾病诊断)受到了很多关注。与疾病类型的分类不同,将医学图像归类为良性或恶性肿瘤是一项精细的任务。但是,大多数研究仅着重于提高诊断准确性,而忽略了模型可靠性的评估,从而限制了其临床应用。对于临床实践,校准对过度参数化的模型和固有的噪声极为明显地提出了低数据表格的主要挑战。特别是,我们发现建模与数据相关的不确定性更有利于置信度校准。与测试时间增强(TTA)相比,我们通过混合数据增强策略提出了一个修改后的自举损失(BS损耗)功能,可以更好地校准预测性不确定性并捕获数据分布转换而无需额外推断时间。我们的实验表明,与标准数据增强,深度集合和MC辍学相比,混合(BSM)模型的BS损失(BSM)模型可以将预期校准误差(ECE)减半。在BSM模型下,不确定性与相似性之间的相关性高达-0.4428。此外,BSM模型能够感知室外数据的语义距离,这表明在现实世界中的临床实践中潜力很高。
translated by 谷歌翻译
尽管脑肿瘤分割的准确性最近取得了进步,但结果仍然遭受低可靠性和鲁棒性的影响。不确定性估计是解决此问题的有效解决方案,因为它提供了对分割结果的信心。当前的不确定性估计方法基于分位数回归,贝叶斯神经网络,集合和蒙特卡洛辍学者受其高计算成本和不一致的限制。为了克服这些挑战,在最近的工作中开发了证据深度学习(EDL),但主要用于自然图像分类。在本文中,我们提出了一个基于区域的EDL分割框架,该框架可以生成可靠的不确定性图和可靠的分割结果。我们使用证据理论将神经网络的输出解释为从输入特征收集的证据价值。遵循主观逻辑,将证据作为差异分布进行了参数化,预测的概率被视为主观意见。为了评估我们在分割和不确定性估计的模型的性能,我们在Brats 2020数据集上进行了定量和定性实验。结果证明了所提出的方法在量化分割不确定性和稳健分割肿瘤方面的最高性能。此外,我们提出的新框架保持了低计算成本和易于实施的优势,并显示了临床应用的潜力。
translated by 谷歌翻译
Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks. Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control. Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31--48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75--78% of all images). Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases. Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
前列腺癌是男性癌症死亡的最常见原因之一。对非侵入性和准确诊断方法的需求不断增长,促进目前在临床实践中的标准前列腺癌风险评估。尽管如此,从多游幂磁共振图像中开发前列腺癌诊断中的计算机辅助癌症诊断仍然是一个挑战。在这项工作中,我们提出了一种新的深度学习方法,可以通过构建两阶段多数量多流卷积神经网络(CNN)基于架构架构的相应磁共振图像中的前列腺病变自动分类。在不实现复杂的图像预处理步骤或第三方软件的情况下,我们的框架在接收器操作特性(ROC)曲线值为0.87的接收器下实现了该区域的分类性能。结果表现出大部分提交的方法,并分享了普罗妥克斯挑战组织者报告的最高价值。我们拟议的基于CNN的框架反映了辅助前列腺癌中的医学图像解释并减少不必要的活组织检查的可能性。
translated by 谷歌翻译
针对组织病理学图像数据的临床决策支持主要侧重于强烈监督的注释,这提供了直观的解释性,但受专业表现的束缚。在这里,我们提出了一种可解释的癌症复发预测网络(Ecarenet),并表明没有强注释的端到端学习提供最先进的性能,而可以通过注意机制包括可解释性。在前列腺癌生存预测的用例上,使用14,479个图像和仅复发时间作为注释,我们在验证集中达到0.78的累积动态AUC,与专家病理学家(以及在单独测试中的AUC为0.77放)。我们的模型是良好的校准,输出生存曲线以及每位患者的风险分数和群体。利用多实例学习层的注意重量,我们表明恶性斑块对预测的影响较高,从而提供了对预测的直观解释。我们的代码可在www.github.com/imsb-uke/ecarenet上获得。
translated by 谷歌翻译
机器学习和深度学习方法对医学的计算机辅助预测成为必需的,在乳房X光检查领域也具有越来越多的应用。通常,这些算法训练,针对特定任务,例如,病变的分类或乳房X乳线图的病理学状态的预测。为了获得患者的综合视图,随后整合或组合所有针对同一任务培训的模型。在这项工作中,我们提出了一种管道方法,我们首先培训一组个人,任务特定的模型,随后调查其融合,与标准模型合并策略相反。我们使用混合患者模型的深度学习模型融合模型预测和高级功能,以在患者水平上构建更强的预测因子。为此,我们提出了一种多分支深度学习模型,其跨不同任务和乳房X光检查有效地融合了功能,以获得全面的患者级预测。我们在公共乳房X线摄影数据,即DDSM及其策划版本CBIS-DDSM上培训并评估我们的全部管道,并报告AUC评分为0.962,以预测任何病变和0.791的存在,以预测患者水平对恶性病变的存在。总体而言,与标准模型合并相比,我们的融合方法将显着提高AUC得分高达0.04。此外,通过提供与放射功能相关的特定于任务的模型结果,提供了与放射性特征相关的任务特定模型结果,我们的管道旨在密切支持放射科学家的阅读工作流程。
translated by 谷歌翻译
与其他癌症相比,胰腺癌具有最差的预后之一,因为它们已被诊断出癌症已朝着后期阶段发展。当前用于诊断胰腺腺癌的手动组织学分级是耗时的,通常会导致误诊。在数字病理学中,基于AI的癌症分级必须在预测和不确定性量化方面非常准确,以提高可靠性和解释性,对于获得临床医生对技术的信任至关重要。我们提出了MGG自动化胰腺癌分级的贝叶斯卷积神经网络,他对图像进行了染色,以估计模型预测中的不确定性。我们表明,估计的不确定性与预测误差相关。具体而言,它对于使用权衡分类准确性 - 拒绝权衡和错误分类成本的度量标准来设置验收阈值很有用,可以通过超参数控制,并且可以在临床环境中使用。
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
肾细胞癌(RCC)是一种常见的癌症,随着临床行为的变化。懒惰的RCC通常是低级的,没有坏死,可以在没有治疗的情况下监测。激进的RCC通常是高级的,如果未及时检测和治疗,可能会导致转移和死亡。虽然大多数肾脏癌在CT扫描中都检测到,但分级是基于侵入性活检或手术的组织学。确定对CT图像的侵略性在临床上很重要,因为它促进了风险分层和治疗计划。这项研究旨在使用机器学习方法来识别与病理学特征相关的放射学特征,以促进评估CT图像而不是组织学上的癌症侵略性。本文提出了一种新型的自动化方法,即按区域(Corrfabr)相关的特征聚集,用于通过利用放射学和相应的不对齐病理学图像之间的相关性来对透明细胞RCC进行分类。 CORRFABR由三个主要步骤组成:(1)特征聚集,其中从放射学和病理图像中提取区域级特征,(2)融合,放射学特征与病理特征相关的放射学特征在区域级别上学习,并且(3)在其中预测的地方学到的相关特征用于仅使用CT作为输入来区分侵略性和顽固的透明细胞RCC。因此,在训练过程中,Corrfabr从放射学和病理学图像中学习,但是在没有病理图像的情况下,Corrfabr将使用CORFABR将侵略性与顽固的透明细胞RCC区分开。 Corrfabr仅比放射学特征改善了分类性能,二进制分类F1分数从0.68(0.04)增加到0.73(0.03)。这证明了将病理疾病特征纳入CT图像上透明细胞RCC侵袭性的分类的潜力。
translated by 谷歌翻译
基于深度学习的组织病理学图像分类是帮助医生提高癌症诊断的准确性和迅速性的关键技术。然而,在复杂的手动注释过程中,嘈杂的标签通常是不可避免的,因此误导了分类模型的培训。在这项工作中,我们介绍了一种用于组织病理学图像分类的新型硬样本感知噪声稳健学习方法。为了区分来自有害嘈杂的内容漏洞,我们通过使用样本培训历史来构建一个简单/硬/噪声(EHN)检测模型。然后,我们将EHN集成到自动训练架构中,通过逐渐校正降低噪声速率。通过获得的几乎干净的数据集,我们进一步提出了一种噪声抑制和硬增强(NSHE)方案来训练噪声鲁棒模型。与以前的作品相比,我们的方法可以节省更多清洁样本,并且可以直接应用于实际嘈杂的数据集场景,而无需使用清洁子集。实验结果表明,该方案在合成和现实世界嘈杂的数据集中优于当前最先进的方法。源代码和数据可在https://github.com/bupt-ai-cz/hsa-nrl/处获得。
translated by 谷歌翻译
在胸部计算机断层扫描(CT)扫描中,自动分割地面玻璃的不透明和固结可以在高资源利用时期减轻放射科医生的负担。但是,由于分布(OOD)数据默默失败,深度学习模型在临床常规中不受信任。我们提出了一种轻巧的OOD检测方法,该方法利用特征空间中的Mahalanobis距离,并无缝集成到最新的分割管道中。简单的方法甚至可以增加具有临床相关的不确定性定量的预训练模型。我们在四个胸部CT分布偏移和两个磁共振成像应用中验证我们的方法,即海马和前列腺的分割。我们的结果表明,所提出的方法在所有探索场景中有效地检测到遥远和近型样品。
translated by 谷歌翻译
在这项研究中,将放射学方法扩展到用于组织分类的光学荧光分子成像数据,称为“验光”。荧光分子成像正在出现在头颈部鳞状细胞癌(HNSCC)切除期间的精确手术引导。然而,肿瘤到正常的组织对比与靶分子表皮生长因子受体(EGFR)的异质表达的内在生理局限性混淆。验光学试图通过探测荧光传达的EGFR表达中的质地模式差异来改善肿瘤识别。从荧光图像样品中提取了总共1,472个标准化的验光特征。涉及支持矢量机分类器的监督机器学习管道接受了25个顶级功能的培训,这些功能由最小冗余最大相关标准选择。通过将切除组织的图像贴片分类为组织学确认的恶性肿瘤状态,将模型预测性能与荧光强度阈值方法进行了比较。与荧光强度阈值方法相比,验光方法在所有测试集样品中提供了一致的预测准确性(无剂量)(平均精度为89%vs. 81%; P = 0.0072)。改进的性能表明,将放射线学方法扩展到荧光分子成像数据为荧光引导手术中的癌症检测提供了有希望的图像分析技术。
translated by 谷歌翻译
超声检查的诊断准确性提高仍然是一个重要目标。在这项研究中,我们提出了一种基于生物物理特征的机器学习方法,用于乳腺癌检测,以改善基准深度学习算法以外的性能,并提供一张颜色的覆盖层覆盖层的视觉图,这些视觉图是病变中恶性肿瘤的可能性。该总体框架称为特定疾病的成像。以前,分别利用改良的完全卷积网络和改良的Googlenet对150个乳房病变进行了细分和分类。在这项研究中,在轮廓病变中进行了多参数分析。从基于生物物理和形态学模型的超声射频,包膜和对数压缩数据中提取特征。带有高斯内核的支持向量机构建了非线性超平面,我们计算了多参数空间中每个特征的超平面和数据点之间的距离。距离可以定量评估病变,并提出颜色编码并覆盖在B模式图像上的恶性肿瘤的可能性。对体内患者数据进行了培训和评估。在我们的研究中,最常见类型和大小的乳腺病变的总体准确性超过98.0%,分类为0.98,而接收器操作特征曲线下的区域的总体准确性比放射科医生的性能和深度学习系统更精确。此外,概率与BI RAD之间的相关性实现了预测乳腺癌的定量指南。因此,我们预计所提出的框架可以帮助放射科医生实现更准确,方便的乳腺癌分类和检测。
translated by 谷歌翻译
乳腺癌是女性最常见的恶性肿瘤,每年负责超过50万人死亡。因此,早期和准确的诊断至关重要。人类专业知识是诊断和正确分类乳腺癌并定义适当的治疗,这取决于评价不同生物标志物如跨膜蛋白受体HER2的表达。该评估需要几个步骤,包括免疫组织化学或原位杂交等特殊技术,以评估HER2状态。通过降低诊断中的步骤和人类偏差的次数的目标,赫洛挑战是组织的,作为第16届欧洲数字病理大会的并行事件,旨在自动化仅基于苏木精和曙红染色的HER2地位的评估侵袭性乳腺癌的组织样本。评估HER2状态的方法是在全球21个团队中提出的,并通过一些提议的方法实现了潜在的观点,以推进最先进的。
translated by 谷歌翻译