场景流程描绘了3D场景的动态,这对于传统上,从诸如自主驾驶,机器人导航,AR / VR等的各种应用来说至关重要。从密集/常规RGB视频帧估计场景流。随着深度感测技术的发展,通过点云可获得精确的3D测量,这在3D场景流中引发了新的研究。然而,由于典型点云采样模式中的稀缺性和不规则性,从点云中提取场景流量仍然具有挑战性。与不规则采样相关的一个主要问题被识别为点设置抽象/特征提取期间的随机性 - 许多流程估计场景中的基本进程。因此,提出了一种注意力(SA ^ 2)层的新型空间抽象,以减轻不稳定的抽象问题。此外,提出了一种注意力(TA ^ 2)层的时间抽象来纠正时间域中的注意力,导致运动中的运动缩放在更大范围内。广泛的分析和实验验证了我们方法的动机和显着性能收益,与空间 - 时间注意(Festa)称为流量估计,与场景流估计的几个最先进的基准相比。
translated by 谷歌翻译
This article presents a novel review of Active SLAM (A-SLAM) research conducted in the last decade. We discuss the formulation, application, and methodology applied in A-SLAM for trajectory generation and control action selection using information theory based approaches. Our extensive qualitative and quantitative analysis highlights the approaches, scenarios, configurations, types of robots, sensor types, dataset usage, and path planning approaches of A-SLAM research. We conclude by presenting the limitations and proposing future research possibilities. We believe that this survey will be helpful to researchers in understanding the various methods and techniques applied to A-SLAM formulation.
translated by 谷歌翻译
Due to their crucial role in all NLP, several benchmarks have been proposed to evaluate pretrained language models. In spite of these efforts, no public benchmark of diverse nature currently exists for evaluation of Arabic. This makes it challenging to measure progress for both Arabic and multilingual language models. This challenge is compounded by the fact that any benchmark targeting Arabic needs to take into account the fact that Arabic is not a single language but rather a collection of languages and varieties. In this work, we introduce ORCA, a publicly available benchmark for Arabic language understanding evaluation. ORCA is carefully constructed to cover diverse Arabic varieties and a wide range of challenging Arabic understanding tasks exploiting 60 different datasets across seven NLU task clusters. To measure current progress in Arabic NLU, we use ORCA to offer a comprehensive comparison between 18 multilingual and Arabic language models. We also provide a public leaderboard with a unified single-number evaluation metric (ORCA score) to facilitate future research.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Conventional methods for human motion synthesis are either deterministic or struggle with the trade-off between motion diversity and motion quality. In response to these limitations, we introduce MoFusion, i.e., a new denoising-diffusion-based framework for high-quality conditional human motion synthesis that can generate long, temporally plausible, and semantically accurate motions based on a range of conditioning contexts (such as music and text). We also present ways to introduce well-known kinematic losses for motion plausibility within the motion diffusion framework through our scheduled weighting strategy. The learned latent space can be used for several interactive motion editing applications -- like inbetweening, seed conditioning, and text-based editing -- thus, providing crucial abilities for virtual character animation and robotics. Through comprehensive quantitative evaluations and a perceptual user study, we demonstrate the effectiveness of MoFusion compared to the state of the art on established benchmarks in the literature. We urge the reader to watch our supplementary video and visit https://vcai.mpi-inf.mpg.de/projects/MoFusion.
translated by 谷歌翻译
Accurate recognition of food items along with quality assessment is of paramount importance in the agricultural industry. Such automated systems can speed up the wheel of the food processing sector and save tons of manual labor. In this connection, the recent advancement of Deep learning-based architectures has introduced a wide variety of solutions offering remarkable performance in several classification tasks. In this work, we have exploited the concept of Densely Connected Convolutional Neural Networks (DenseNets) for fruit quality assessment. The feature propagation towards the deeper layers has enabled the network to tackle the vanishing gradient problems and ensured the reuse of features to learn meaningful insights. Evaluating on a dataset of 19,526 images containing six fruits having three quality grades for each, the proposed pipeline achieved a remarkable accuracy of 99.67%. The robustness of the model was further tested for fruit classification and quality assessment tasks where the model produced a similar performance, which makes it suitable for real-life applications.
translated by 谷歌翻译
Social media platforms allow users to freely share their opinions about issues or anything they feel like. However, they also make it easier to spread hate and abusive content. The Fulani ethnic group has been the victim of this unfortunate phenomenon. This paper introduces the HERDPhobia - the first annotated hate speech dataset on Fulani herders in Nigeria - in three languages: English, Nigerian-Pidgin, and Hausa. We present a benchmark experiment using pre-trained languages models to classify the tweets as either hateful or non-hateful. Our experiment shows that the XML-T model provides better performance with 99.83% weighted F1. We released the dataset at https://github.com/hausanlp/HERDPhobia for further research.
translated by 谷歌翻译
Grammatical Error Correction (GEC) is the task of automatically detecting and correcting errors in text. The task not only includes the correction of grammatical errors, such as missing prepositions and mismatched subject-verb agreement, but also orthographic and semantic errors, such as misspellings and word choice errors respectively. The field has seen significant progress in the last decade, motivated in part by a series of five shared tasks, which drove the development of rule-based methods, statistical classifiers, statistical machine translation, and finally neural machine translation systems which represent the current dominant state of the art. In this survey paper, we condense the field into a single article and first outline some of the linguistic challenges of the task, introduce the most popular datasets that are available to researchers (for both English and other languages), and summarise the various methods and techniques that have been developed with a particular focus on artificial error generation. We next describe the many different approaches to evaluation as well as concerns surrounding metric reliability, especially in relation to subjective human judgements, before concluding with an overview of recent progress and suggestions for future work and remaining challenges. We hope that this survey will serve as comprehensive resource for researchers who are new to the field or who want to be kept apprised of recent developments.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals. Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications. These developments also triggered the need for novel and improved computer vision techniques capable of (i) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and (ii) facilitating normal operation of existing vision-based services, such as biometric authentication schemes, on the other. Especially important here, are computer vision techniques that focus on the analysis of people and faces in visual data and have been affected the most by the partial occlusions introduced by the mandates for facial masks. Such computer vision based human analysis techniques include face and face-mask detection approaches, face recognition techniques, crowd counting solutions, age and expression estimation procedures, models for detecting face-hand interactions and many others, and have seen considerable attention over recent years. The goal of this survey is to provide an introduction to the problems induced by COVID-19 into such research and to present a comprehensive review of the work done in the computer vision based human analysis field. Particular attention is paid to the impact of facial masks on the performance of various methods and recent solutions to mitigate this problem. Additionally, a detailed review of existing datasets useful for the development and evaluation of methods for COVID-19 related applications is also provided. Finally, to help advance the field further, a discussion on the main open challenges and future research direction is given.
translated by 谷歌翻译