Machine learning is the study of computer algorithms that can automatically improve based on data and experience. Machine learning algorithms build a model from sample data, called training data, to make predictions or judgments without being explicitly programmed to do so. A variety of wellknown machine learning algorithms have been developed for use in the field of computer science to analyze data. This paper introduced a new machine learning algorithm called impact learning. Impact learning is a supervised learning algorithm that can be consolidated in both classification and regression problems. It can furthermore manifest its superiority in analyzing competitive data. This algorithm is remarkable for learning from the competitive situation and the competition comes from the effects of autonomous features. It is prepared by the impacts of the highlights from the intrinsic rate of natural increase (RNI). We, moreover, manifest the prevalence of the impact learning over the conventional machine learning algorithm.
translated by 谷歌翻译
The task of locating and classifying different types of vehicles has become a vital element in numerous applications of automation and intelligent systems ranging from traffic surveillance to vehicle identification and many more. In recent times, Deep Learning models have been dominating the field of vehicle detection. Yet, Bangladeshi vehicle detection has remained a relatively unexplored area. One of the main goals of vehicle detection is its real-time application, where `You Only Look Once' (YOLO) models have proven to be the most effective architecture. In this work, intending to find the best-suited YOLO architecture for fast and accurate vehicle detection from traffic images in Bangladesh, we have conducted a performance analysis of different variants of the YOLO-based architectures such as YOLOV3, YOLOV5s, and YOLOV5x. The models were trained on a dataset containing 7390 images belonging to 21 types of vehicles comprising samples from the DhakaAI dataset, the Poribohon-BD dataset, and our self-collected images. After thorough quantitative and qualitative analysis, we found the YOLOV5x variant to be the best-suited model, performing better than YOLOv3 and YOLOv5s models respectively by 7 & 4 percent in mAP, and 12 & 8.5 percent in terms of Accuracy.
translated by 谷歌翻译
Automatic medical image classification is a very important field where the use of AI has the potential to have a real social impact. However, there are still many challenges that act as obstacles to making practically effective solutions. One of those is the fact that most of the medical imaging datasets have a class imbalance problem. This leads to the fact that existing AI techniques, particularly neural network-based deep-learning methodologies, often perform poorly in such scenarios. Thus this makes this area an interesting and active research focus for researchers. In this study, we propose a novel loss function to train neural network models to mitigate this critical issue in this important field. Through rigorous experiments on three independently collected datasets of three different medical imaging domains, we empirically show that our proposed loss function consistently performs well with an improvement between 2%-10% macro f1 when compared to the baseline models. We hope that our work will precipitate new research toward a more generalized approach to medical image classification.
translated by 谷歌翻译
评估人工智能系统的可信赖性需要许多不同学科的知识。这些学科不一定在它们之间共享概念,并且可能使用具有不同含义的单词,甚至使用相同的单词不同。此外,来自不同学科的专家可能不知道其他学科中很容易使用的专业术语。因此,评估过程的核心挑战是确定来自不同学科的专家何时谈论相同的问题,但使用不同的术语。换句话说,问题是将问题描述(又称问题)分组具有相同的语义含义,但使用略有不同的术语进行了描述。在这项工作中,我们展示了我们如何采用自然语言处理的最新进展,即句子嵌入和语义文本相似性,以支持此识别过程,并弥合跨学科专家团队中评估人工智能系统可信赖的跨学科沟通差距。
translated by 谷歌翻译
由于其在非洲以外的40多个国家 /地区的迅速传播,最近的蒙基托克斯爆发已成为公共卫生问题。由于与水痘和麻疹的相似之处,蒙基托斯在早期的临床诊断是具有挑战性的。如果不容易获得验证性聚合酶链反应(PCR)测试,那么计算机辅助检测蒙基氧基病变可能对可疑病例的监视和快速鉴定有益。只要有足够的训练示例,深度学习方法在自动检测皮肤病变中有效。但是,截至目前,此类数据集尚未用于猴蛋白酶疾病。在当前的研究中,我们首先开发``Monkeypox皮肤病变数据集(MSLD)。用于增加样本量,并建立了3倍的交叉验证实验。在下一步中,采用了几种预训练的深度学习模型,即VGG-16,Resnet50和InceptionV3用于对Monkeypox和Monkeypox和Monkeypox和其他疾病。还开发了三种型号的合奏。RESNET50达到了82.96美元(\ pm4.57 \%)$的最佳总体准确性,而VGG16和整体系统的准确性达到了81.48美元(\ pm6.87 \%)$和$ 79.26(\ pm1.05 \%)$。还开发了一个原型网络应用程序作为在线蒙基蛋白筛选工具。虽然该有限数据集的初始结果是有希望的,但需要更大的人口统计学多样化的数据集来进一步增强性增强性。这些的普遍性 楷模。
translated by 谷歌翻译
深度学习模型通过从训练的数据集学习来提供图像处理的令人难以置信的结果。菠菜是一种含有维生素和营养素的叶蔬菜。在我们的研究中,已经使用了一种可以自动识别菠菜的深度学习方法,并且该方法具有总共五种菠菜的数据集,其中包含3785个图像。四种卷积神经网络(CNN)模型用于对我们的菠菜进行分类。这些模型为图像分类提供更准确的结果。在应用这些模型之前,存在一些预处理图像数据。为了预处理数据,需要发生一些方法。那些是RGB转换,过滤,调整大小和重新划分和分类。应用这些方法后,图像数据被预处理并准备好在分类器算法中使用。这些分类器的准确性在98.68%至99.79%之间。在这些模型中,VGG16实现了99.79%的最高精度。
translated by 谷歌翻译
医疗保健的服务质量不断受到大流行病(即Covid-19)和自然灾害(如飓风和地震)的异常事件所挑战。在大多数情况下,这些事件导致决策中的批判性不确定性,以及在医院的多个医学和经济方面。外部(地理)或内部因素(医疗和管理),导致规划和预算的转变,但最重要的是,最重要的是,降低对传统过程的信心。在某些情况下,其他医院的支持证明了加剧规划方面。此稿件提供三种数据驱动方法,提供数据驱动的指标,以帮助医疗管理人员组织其经济学,并确定资源分配和共享最佳计划。常规决策方法在推荐经理验证的政策方面不足。使用强化学习,遗传算法,旅行推销员和聚类,我们试验不同的医疗变量,并提供可在卫生机构应用的工具和结果。进行实验;记录,评估和呈现结果。
translated by 谷歌翻译
在从训练的数据集中学习后,AI Chatbot提供了令人印象深刻的响应。在这十年中,大多数研究工作都表现出深层神经模型优于任何其他模型。 RNN模型定期用于确定序列相关的问题,如问题和IT答案。这种方法熟悉每个人都是SEQ2SEQ学习。在SEQ2SEQ模型机制中,它具有编码器和解码器。编码器嵌入任何输入序列,以及解码器嵌入输出序列。为了加强SEQ2SEQ模型性能,请将注意力添加到编码器和解码器中。之后,变压器模型已经将其自身作为高性能模型引入,具有多种关注机制,用于解决与序列相关的困境。该模型与基于RNN的模型相比减少了训练时间,并且还实现了序列转换的最先进的性能。在这项研究中,我们基于孟加拉普通知识问题答案(QA)数据集,应用了孟加拉一般知识聊天聊天的变压器模型。它在应用的QA数据上得分为85.0 BLEU。要检查变压器模型性能的比较,我们将注意到SEQ2SEQ模型,请注意我们的数据集得分23.5 BLEU。
translated by 谷歌翻译
在过去的十年中,使用深度学习方法从胸部X光片检测到胸部X光片是一个活跃的研究领域。大多数以前的方法试图通过识别负责对模型预测的重要贡献的空间区域来关注图像的患病器官。相比之下,专家放射科医生在确定这些区域是否异常之前首先找到突出的解剖结构。因此,将解剖学知识纳入深度学习模型可能会带来自动疾病分类的大幅改善。在此激励的情况下,我们提出了解剖学XNET,这是一种基于解剖学注意的胸腔疾病分类网络,该网络优先考虑由预识别的解剖区域引导的空间特征。我们通过利用可用的小规模器官级注释来采用半监督的学习方法,将解剖区域定位在没有器官级注释的大规模数据集中。拟议的解剖学XNET使用预先训练的Densenet-121作为骨干网络,具有两个相应的结构化模块,解剖学意识到($^3 $)和概率加权平均池(PWAP),在凝聚力框架中引起解剖学的关注学习。我们通过实验表明,我们提出的方法通过在三个公开可用的大规模CXR数据集中获得85.78%,92.07%和84.04%的AUC得分来设置新的最先进基准测试。和模拟CXR。这不仅证明了利用解剖学分割知识来改善胸病疾病分类的功效,而且还证明了所提出的框架的普遍性。
translated by 谷歌翻译