事实核对是打击在线错误信息方面的有效解决方案之一。但是,传统的事实检查是一个需要稀缺专家人力资源的过程,因此由于要检查新内容的持续流动,因此在社交媒体上并不能很好地扩展。已经提出了基于众包的方法来应对这一挑战,因为它们可以以较小的成本进行扩展,但是尽管它们证明是可行的,但一直在受控环境中进行研究。在这项工作中,我们研究了在BirdWatch计划的Twitter启动的,在实践中部署的众包事实检查的第一个大规模努力。我们的分析表明,在某些情况下,众包可能是一种有效的事实检查策略,甚至可以与人类专家获得的结果相媲美,但不会导致其他人的一致,可行的结果。我们处理了BirdWatch计划验证的11.9k推文,并报告了i)人群和专家如何选择内容的内容的差异,ii)ii)人群和专家如何将不同的资源检索到事实检查,以及III )与专家检查员相比,人群在事实检查可伸缩性和效率方面所显示的优势。
translated by 谷歌翻译
实体分辨率是一个广泛研究的问题,有几个提案可以匹配关系的记录。匹配文本内容是许多应用程序中的广泛任务,例如问题应答和搜索。虽然最近的方法实现了这两个任务的有希望的结果,但没有明确的解决方案对于匹配文本内容和结构化数据的更一般性问题。我们介绍了一个框架,支持这项新任务,在任何一对语料库,是关系表或文本文档的无监督环境中。我们的方法在Corpora的内容上构建了一个细粒度的图表,并派生了Word Embeddings以表示要在低维空间中匹配的对象。学习的表示使得能够以不同的粒度与文本句子和段落的相关粒度有效和有效地匹配。我们灵活的框架可以利用预先训练的资源,但它不依赖于它们的存在,并且当词汇表是特定的域时,匹配内容的更好的质量性能。我们还使用“展开和压缩”方法在图形创建过程中引入优化,该方法首先识别跨元素的新有效关系,以改善匹配,然后修剪节点和边,以减少图表大小。实际用例和公共数据集的实验表明,我们的框架在结果'质量和在执行时间内,我们的框架产生了优于嵌入嵌入和微调语言模型的嵌入品。
translated by 谷歌翻译
We are witnessing a widespread adoption of artificial intelligence in healthcare. However, most of the advancements in deep learning (DL) in this area consider only unimodal data, neglecting other modalities. Their multimodal interpretation necessary for supporting diagnosis, prognosis and treatment decisions. In this work we present a deep architecture, explainable by design, which jointly learns modality reconstructions and sample classifications using tabular and imaging data. The explanation of the decision taken is computed by applying a latent shift that, simulates a counterfactual prediction revealing the features of each modality that contribute the most to the decision and a quantitative score indicating the modality importance. We validate our approach in the context of COVID-19 pandemic using the AIforCOVID dataset, which contains multimodal data for the early identification of patients at risk of severe outcome. The results show that the proposed method provides meaningful explanations without degrading the classification performance.
translated by 谷歌翻译
Human Activity Recognition (HAR) is one of the core research areas in mobile and wearable computing. With the application of deep learning (DL) techniques such as CNN, recognizing periodic or static activities (e.g, walking, lying, cycling, etc.) has become a well studied problem. What remains a major challenge though is the sporadic activity recognition (SAR) problem, where activities of interest tend to be non periodic, and occur less frequently when compared with the often large amount of irrelevant background activities. Recent works suggested that sequential DL models (such as LSTMs) have great potential for modeling nonperiodic behaviours, and in this paper we studied some LSTM training strategies for SAR. Specifically, we proposed two simple yet effective LSTM variants, namely delay model and inverse model, for two SAR scenarios (with and without time critical requirement). For time critical SAR, the delay model can effectively exploit predefined delay intervals (within tolerance) in form of contextual information for improved performance. For regular SAR task, the second proposed, inverse model can learn patterns from the time series in an inverse manner, which can be complementary to the forward model (i.e.,LSTM), and combining both can boost the performance. These two LSTM variants are very practical, and they can be deemed as training strategies without alteration of the LSTM fundamentals. We also studied some additional LSTM training strategies, which can further improve the accuracy. We evaluated our models on two SAR and one non-SAR datasets, and the promising results demonstrated the effectiveness of our approaches in HAR applications.
translated by 谷歌翻译
Testing Deep Learning (DL) based systems inherently requires large and representative test sets to evaluate whether DL systems generalise beyond their training datasets. Diverse Test Input Generators (TIGs) have been proposed to produce artificial inputs that expose issues of the DL systems by triggering misbehaviours. Unfortunately, such generated inputs may be invalid, i.e., not recognisable as part of the input domain, thus providing an unreliable quality assessment. Automated validators can ease the burden of manually checking the validity of inputs for human testers, although input validity is a concept difficult to formalise and, thus, automate. In this paper, we investigate to what extent TIGs can generate valid inputs, according to both automated and human validators. We conduct a large empirical study, involving 2 different automated validators, 220 human assessors, 5 different TIGs and 3 classification tasks. Our results show that 84% artificially generated inputs are valid, according to automated validators, but their expected label is not always preserved. Automated validators reach a good consensus with humans (78% accuracy), but still have limitations when dealing with feature-rich datasets.
translated by 谷歌翻译
Deep Neural Networks (DNN) are increasingly used as components of larger software systems that need to process complex data, such as images, written texts, audio/video signals. DNN predictions cannot be assumed to be always correct for several reasons, among which the huge input space that is dealt with, the ambiguity of some inputs data, as well as the intrinsic properties of learning algorithms, which can provide only statistical warranties. Hence, developers have to cope with some residual error probability. An architectural pattern commonly adopted to manage failure-prone components is the supervisor, an additional component that can estimate the reliability of the predictions made by untrusted (e.g., DNN) components and can activate an automated healing procedure when these are likely to fail, ensuring that the Deep Learning based System (DLS) does not cause damages, despite its main functionality being suspended. In this paper, we consider DLS that implement a supervisor by means of uncertainty estimation. After overviewing the main approaches to uncertainty estimation and discussing their pros and cons, we motivate the need for a specific empirical assessment method that can deal with the experimental setting in which supervisors are used, where the accuracy of the DNN matters only as long as the supervisor lets the DLS continue to operate. Then we present a large empirical study conducted to compare the alternative approaches to uncertainty estimation. We distilled a set of guidelines for developers that are useful to incorporate a supervisor based on uncertainty monitoring into a DLS.
translated by 谷歌翻译
Emerging applications such as Deep Learning are often data-driven, thus traditional approaches based on auto-tuners are not performance effective across the wide range of inputs used in practice. In the present paper, we start an investigation of predictive models based on machine learning techniques in order to optimize Convolution Neural Networks (CNNs). As a use-case, we focus on the ARM Compute Library which provides three different implementations of the convolution operator at different numeric precision. Starting from a collation of benchmarks, we build and validate models learned by Decision Tree and naive Bayesian classifier. Preliminary experiments on Midgard-based ARM Mali GPU show that our predictive model outperforms all the convolution operators manually selected by the library.
translated by 谷歌翻译
A tractogram is a virtual representation of the brain white matter. It is composed of millions of virtual fibers, encoded as 3D polylines, which approximate the white matter axonal pathways. To date, tractograms are the most accurate white matter representation and thus are used for tasks like presurgical planning and investigations of neuroplasticity, brain disorders, or brain networks. However, it is a well-known issue that a large portion of tractogram fibers is not anatomically plausible and can be considered artifacts of the tracking procedure. With Verifyber, we tackle the problem of filtering out such non-plausible fibers using a novel fully-supervised learning approach. Differently from other approaches based on signal reconstruction and/or brain topology regularization, we guide our method with the existing anatomical knowledge of the white matter. Using tractograms annotated according to anatomical principles, we train our model, Verifyber, to classify fibers as either anatomically plausible or non-plausible. The proposed Verifyber model is an original Geometric Deep Learning method that can deal with variable size fibers, while being invariant to fiber orientation. Our model considers each fiber as a graph of points, and by learning features of the edges between consecutive points via the proposed sequence Edge Convolution, it can capture the underlying anatomical properties. The output filtering results highly accurate and robust across an extensive set of experiments, and fast; with a 12GB GPU, filtering a tractogram of 1M fibers requires less than a minute. Verifyber implementation and trained models are available at https://github.com/FBK-NILab/verifyber.
translated by 谷歌翻译
As aerial robots are tasked to navigate environments of increased complexity, embedding collision tolerance in their design becomes important. In this survey we review the current state-of-the-art within the niche field of collision-tolerant micro aerial vehicles and present different design approaches identified in the literature, as well as methods that have focused on autonomy functionalities that exploit collision resilience. Subsequently, we discuss the relevance to biological systems and provide our view on key directions of future fruitful research.
translated by 谷歌翻译
In this paper we raise the research question of whether fake news and hate speech spreaders share common patterns in language. We compute a novel index, the ingroup vs outgroup index, in three different datasets and we show that both phenomena share an "us vs them" narrative.
translated by 谷歌翻译