基于$ K $ NN的神经电机翻译($ K $ NN-MT)已经实现了最先进的MT任务。 $ k $ nn-mt的一个重要缺点在于识别来自整个数据存储的查询表示的$ k $最近邻居的效率低下,这在数据存储大小大的情况下是毫无疑问的。在这项工作中,我们提出\ TextBF {更快$ k $ nn-mt}来解决这个问题。更快的k $ nn-mt的核心思想是使用分层聚类策略来近似数据存储区中的查询和数据点之间的距离,该数据点被分解为两个部分:查询与中心之间的距离群集数据点属于,以及数据点与群集中心之间的距离。我们提出了实际的方法来以明显更快的方式计算这两个部分。通过对不同的MT基准测试的大量实验,我们展示了\ TextBF {更快$ K $ NN-MT}速度快于Fast $ K $ NN-MT \ CITEP {Meng2021Fast},只略微(1.2次)比其香草对应物慢保持模型性能为$ k $ nn-mt。更快$ k $ nn-mt,可以在现实世界MT服务上部署$ K $ NN-MT模型。
translated by 谷歌翻译
在这项工作中,由{\它复制的概念更容易记住}的概念,我们介绍了GNN-LM,它通过允许在整个训练语料库中引用类似的上下文来扩展Vanilla神经语言模型(LM)。我们在输入上下文和从训练语料库中选择的语义相关邻居之间构建一个定向的异构图,其中节点是输入上下文中的令牌和检索到的邻居上下文,并且边缘表示节点之间的连接。图形神经网络(GNNS)在图表上构建,以聚合来自类似上下文的信息来解码令牌。此学习范例提供了直接访问参考上下文,并有助于提高模型的泛化能力。我们进行全面的实验以验证GNN-LM的有效性:GNN-LM在Wikitext-103上实现了14.8的新的最先进的困惑(在Vanilla LM模型的对应于的4.5点改进)和显示对强大基线的十亿个单词和enWiki8数据集进行大量改进。进行深度消融研究以了解GNN-LM的机制。可以在\ url {https://github.com/shannonai/gnn-lm}中找到代码}
translated by 谷歌翻译
在本文中,我们提出了一个手动注释的10,000名推文载有五个Covid-19事件的公开报告,包括积极和消极的测试,死亡,拒绝获得测试,索赔治愈和预防。我们为每种事件类型设计了插槽填充问题,并注释了总共31个细粒度的插槽,例如事件的位置,最近的旅行和密切联系人。我们表明我们的语料库可以支持微调基于伯特的分类器,以自动提取公共报告的事件,并帮助跟踪新疾病的传播。我们还证明,通过从数百万推文中提取的事件汇总,我们在回答复杂的查询时达到令人惊讶的高精度,例如“哪些组织在费城在费城测试的员工?”我们将释放我们的语料库(使用用户信息被删除),自动提取模型以及研究社区的相应知识库。
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Image Virtual try-on aims at replacing the cloth on a personal image with a garment image (in-shop clothes), which has attracted increasing attention from the multimedia and computer vision communities. Prior methods successfully preserve the character of clothing images, however, occlusion remains a pernicious effect for realistic virtual try-on. In this work, we first present a comprehensive analysis of the occlusions and categorize them into two aspects: i) Inherent-Occlusion: the ghost of the former cloth still exists in the try-on image; ii) Acquired-Occlusion: the target cloth warps to the unreasonable body part. Based on the in-depth analysis, we find that the occlusions can be simulated by a novel semantically-guided mixup module, which can generate semantic-specific occluded images that work together with the try-on images to facilitate training a de-occlusion try-on (DOC-VTON) framework. Specifically, DOC-VTON first conducts a sharpened semantic parsing on the try-on person. Aided by semantics guidance and pose prior, various complexities of texture are selectively blending with human parts in a copy-and-paste manner. Then, the Generative Module (GM) is utilized to take charge of synthesizing the final try-on image and learning to de-occlusion jointly. In comparison to the state-of-the-art methods, DOC-VTON achieves better perceptual quality by reducing occlusion effects.
translated by 谷歌翻译
Dynamic treatment regimes assign personalized treatments to patients sequentially over time based on their baseline information and time-varying covariates. In mobile health applications, these covariates are typically collected at different frequencies over a long time horizon. In this paper, we propose a deep spectral Q-learning algorithm, which integrates principal component analysis (PCA) with deep Q-learning to handle the mixed frequency data. In theory, we prove that the mean return under the estimated optimal policy converges to that under the optimal one and establish its rate of convergence. The usefulness of our proposal is further illustrated via simulations and an application to a diabetes dataset.
translated by 谷歌翻译
As natural language processing (NLP) for gender bias becomes a significant interdisciplinary topic, the prevalent data-driven techniques such as large-scale language models suffer from data inadequacy and biased corpus, especially for languages with insufficient resources such as Chinese. To this end, we propose a Chinese cOrpus foR Gender bIas Probing and Mitigation CORGI-PM, which contains 32.9k sentences with high-quality labels derived by following an annotation scheme specifically developed for gender bias in the Chinese context. Moreover, we address three challenges for automatic textual gender bias mitigation, which requires the models to detect, classify, and mitigate textual gender bias. We also conduct experiments with state-of-the-art language models to provide baselines. To our best knowledge, CORGI-PM is the first sentence-level Chinese corpus for gender bias probing and mitigation.
translated by 谷歌翻译
Off-policy evaluation (OPE) is a method for estimating the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy. In some cases, there may be unmeasured variables that can confound the action-reward or action-next-state relationships, rendering many existing OPE approaches ineffective. This paper develops an instrumental variable (IV)-based method for consistent OPE in confounded Markov decision processes (MDPs). Similar to single-stage decision making, we show that IV enables us to correctly identify the target policy's value in infinite horizon settings as well. Furthermore, we propose an efficient and robust value estimator and illustrate its effectiveness through extensive simulations and analysis of real data from a world-leading short-video platform.
translated by 谷歌翻译
Off-Policy evaluation (OPE) is concerned with evaluating a new target policy using offline data generated by a potentially different behavior policy. It is critical in a number of sequential decision making problems ranging from healthcare to technology industries. Most of the work in existing literature is focused on evaluating the mean outcome of a given policy, and ignores the variability of the outcome. However, in a variety of applications, criteria other than the mean may be more sensible. For example, when the reward distribution is skewed and asymmetric, quantile-based metrics are often preferred for their robustness. In this paper, we propose a doubly-robust inference procedure for quantile OPE in sequential decision making and study its asymptotic properties. In particular, we propose utilizing state-of-the-art deep conditional generative learning methods to handle parameter-dependent nuisance function estimation. We demonstrate the advantages of this proposed estimator through both simulations and a real-world dataset from a short-video platform. In particular, we find that our proposed estimator outperforms classical OPE estimators for the mean in settings with heavy-tailed reward distributions.
translated by 谷歌翻译
The ability to jointly learn from multiple modalities, such as text, audio, and visual data, is a defining feature of intelligent systems. While there have been promising advances in designing neural networks to harness multimodal data, the enormous success of data augmentation currently remains limited to single-modality tasks like image classification. Indeed, it is particularly difficult to augment each modality while preserving the overall semantic structure of the data; for example, a caption may no longer be a good description of an image after standard augmentations have been applied, such as translation. Moreover, it is challenging to specify reasonable transformations that are not tailored to a particular modality. In this paper, we introduce LeMDA, Learning Multimodal Data Augmentation, an easy-to-use method that automatically learns to jointly augment multimodal data in feature space, with no constraints on the identities of the modalities or the relationship between modalities. We show that LeMDA can (1) profoundly improve the performance of multimodal deep learning architectures, (2) apply to combinations of modalities that have not been previously considered, and (3) achieve state-of-the-art results on a wide range of applications comprised of image, text, and tabular data.
translated by 谷歌翻译