我们开发了一种多尺度方法,以从实验或模拟中观察到的物理字段或配置的数据集估算高维概率分布。通过这种方式,我们可以估计能量功能(或哈密顿量),并有效地在从统计物理学到宇宙学的各个领域中生成多体系统的新样本。我们的方法 - 小波条件重新归一化组(WC-RG) - 按比例进行估算,以估算由粗粒磁场来调节的“快速自由度”的条件概率的模型。这些概率分布是由与比例相互作用相关的能量函数建模的,并以正交小波为基础表示。 WC-RG将微观能量函数分解为各个尺度上的相互作用能量之和,并可以通过从粗尺度到细度来有效地生成新样品。近相变,它避免了直接估计和采样算法的“临界减速”。理论上通过结合RG和小波理论的结果来解释这一点,并为高斯和$ \ varphi^4 $字段理论进行数值验证。我们表明,多尺度WC-RG基于能量的模型比局部电位模型更通用,并且可以在所有长度尺度上捕获复杂的多体相互作用系统的物理。这是针对反映宇宙学中暗物质分布的弱透镜镜头的,其中包括与长尾概率分布的长距离相互作用。 WC-RG在非平衡系统中具有大量的潜在应用,其中未知基础分布{\ it先验}。最后,我们讨论了WC-RG和深层网络体系结构之间的联系。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
大多数经典的大满贯系统都依赖于静态场景假设,这限制了其在现实世界中的适用性。最近提出了最近的SLAM框架来同时跟踪相机和移动对象。但是,他们通常无法估计物体的规范姿势并表现出低对象跟踪精度。为了解决这个问题,我们提出了Twistslam ++,这是一种语义,动态的,全动态的,可融合立体声图像和LiDAR信息。使用语义信息,我们跟踪可能移动对象,并将它们与LIDAR扫描中的3D对象检测相关联,以获得其姿势和尺寸。然后,我们对连续对象扫描进行注册以完善对象姿势估计。最后,使用对象扫描来估计对象的形状,并约束MAP点位于BA内的估计表面上。我们在经典的基准上表明,基于多模式信息的这种融合方法提高了对象跟踪的准确性。
translated by 谷歌翻译
数值验证是机器学习研究的核心,因为它允许评估新方法的实际影响,并确认理论和实践之间的一致性。然而,该领域的快速发展构成了一些挑战:研究人员面临着大量的方法来比较,有限的透明度和最佳实践的共识以及乏味的重新实施工作。结果,验证通常是非常部分的,这可能会导致错误的结论,从而减慢研究的进展。我们提出了Benchopt,这是一个协作框架,旨在在跨编程语言和硬件体系结构的机器学习中自动化,复制和发布优化基准。 Benchopt通过提供用于运行,共享和扩展实验的现成工具来简化社区的基准测试。为了展示其广泛的可用性,我们在三个标准学习任务上展示基准:$ \ ell_2 $ regulaine的逻辑回归,套索和RESNET18用于图像分类的培训。这些基准强调了关键的实际发现,这些发现对这些问题的最新问题更加细微,这表明在实际评估中,魔鬼在细节上。我们希望Benchopt能在社区中促进合作工作,从而改善研究结果的可重复性。
translated by 谷歌翻译
经典的视觉同时定位和映射(SLAM)算法通常假设环境是刚性的。此假设限制了这些算法的适用性,因为它们无法准确估算包含移动物体的现实生活场景中的相机姿势和世界结构(例如汽车,自行车,行人等)。为了解决这个问题,我们提出了Twistlam:一种语义,动态和立体声猛击系统,可以跟踪环境中的动态对象。我们的算法根据其语义类创建积分群。得益于通过机械关节建模的集群间约束(语义类的功能)的定义,因此,新颖的约束束调整能够共同估计移动物体的姿势和速度以及古典世界结构和摄像机轨迹。我们对公共Kitti数据集的多个序列进行了评估,并定量证明它与最新方法相比改进了相机和对象跟踪。
translated by 谷歌翻译
我们推出了元学学习算法概括性的新信息 - 理论分析。具体地,我们的分析提出了对传统学习 - 学习框架和现代模型 - 不可知的元学习(MAML)算法的通用理解。此外,我们为MAML的随机变体提供了一种数据依赖的泛化,这对于深入的少量学习是不受空置的。与以前的范围相比,依赖于梯度方形规范的界限,对模拟数据和众所周知的少量射击基准测试的经验验证表明,我们的绑定是大多数情况下更紧密的级。
translated by 谷歌翻译