经典的视觉同时定位和映射(SLAM)算法通常假设环境是刚性的。此假设限制了这些算法的适用性,因为它们无法准确估算包含移动物体的现实生活场景中的相机姿势和世界结构(例如汽车,自行车,行人等)。为了解决这个问题,我们提出了Twistlam:一种语义,动态和立体声猛击系统,可以跟踪环境中的动态对象。我们的算法根据其语义类创建积分群。得益于通过机械关节建模的集群间约束(语义类的功能)的定义,因此,新颖的约束束调整能够共同估计移动物体的姿势和速度以及古典世界结构和摄像机轨迹。我们对公共Kitti数据集的多个序列进行了评估,并定量证明它与最新方法相比改进了相机和对象跟踪。
translated by 谷歌翻译
大多数经典的大满贯系统都依赖于静态场景假设,这限制了其在现实世界中的适用性。最近提出了最近的SLAM框架来同时跟踪相机和移动对象。但是,他们通常无法估计物体的规范姿势并表现出低对象跟踪精度。为了解决这个问题,我们提出了Twistslam ++,这是一种语义,动态的,全动态的,可融合立体声图像和LiDAR信息。使用语义信息,我们跟踪可能移动对象,并将它们与LIDAR扫描中的3D对象检测相关联,以获得其姿势和尺寸。然后,我们对连续对象扫描进行注册以完善对象姿势估计。最后,使用对象扫描来估计对象的形状,并约束MAP点位于BA内的估计表面上。我们在经典的基准上表明,基于多模式信息的这种融合方法提高了对象跟踪的准确性。
translated by 谷歌翻译
结合同时定位和映射(SLAM)估计和动态场景建模可以高效地在动态环境中获得机器人自主权。机器人路径规划和障碍避免任务依赖于场景中动态对象运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态对象感知SLAM系统,用于利用语义信息,使得能够在场景中进行准确的运动估计和跟踪动态刚性物体,而无需任何先前的物体形状或几何模型的知识。所提出的方法识别和跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致机器人轨迹的高度准确估计和对象的全部SE(3)运动以及环境的时空地图。该系统能够从对象的SE(3)运动中提取线性速度估计,为复杂的动态环境中的导航提供重要功能。我们展示了所提出的系统对许多真实室内和室外数据集的性能,结果表明了对最先进的算法的一致和实质性的改进。可以使用源代码的开源版本。
translated by 谷歌翻译
Simultaneous Localization & Mapping (SLAM) is the process of building a mutual relationship between localization and mapping of the subject in its surrounding environment. With the help of different sensors, various types of SLAM systems have developed to deal with the problem of building the relationship between localization and mapping. A limitation in the SLAM process is the lack of consideration of dynamic objects in the mapping of the environment. We propose the Dynamic Object Tracking SLAM (DyOb-SLAM), which is a Visual SLAM system that can localize and map the surrounding dynamic objects in the environment as well as track the dynamic objects in each frame. With the help of a neural network and a dense optical flow algorithm, dynamic objects and static objects in an environment can be differentiated. DyOb-SLAM creates two separate maps for both static and dynamic contents. For the static features, a sparse map is obtained. For the dynamic contents, a trajectory global map is created as output. As a result, a frame to frame real-time based dynamic object tracking system is obtained. With the pose calculation of the dynamic objects and camera, DyOb-SLAM can estimate the speed of the dynamic objects with time. The performance of DyOb-SLAM is observed by comparing it with a similar Visual SLAM system, VDO-SLAM and the performance is measured by calculating the camera and object pose errors as well as the object speed error.
translated by 谷歌翻译
动态对象感知的SLAM(DOS)利用对象级信息以在动态环境中启用强大的运动估计。现有方法主要集中于识别和排除优化的动态对象。在本文中,我们表明,基于功能的视觉量大系统也可以通过利用两个观察结果来受益于动态铰接式对象的存在:(1)随着时间的推移,铰接对象的每个刚性部分的3D结构保持一致; (2)同一刚性零件上的点遵循相同的运动。特别是,我们提出了Airdos,这是一种动态的对象感知系统,该系统将刚度和运动限制引入模型铰接对象。通过共同优化相机姿势,对象运动和对象3D结构,我们可以纠正摄像头姿势估计,防止跟踪损失,并为动态对象和静态场景生成4D时空图。实验表明,我们的算法改善了在挑战拥挤的城市环境中的视觉大满贯算法的鲁棒性。据我们所知,Airdos是第一个动态对象感知的大满贯系统,该系统表明可以通过合并动态铰接式对象来改善相机姿势估计。
translated by 谷歌翻译
完全自主移动机器人的现实部署取决于能够处理动态环境的强大的大满贯(同时本地化和映射)系统,其中对象在机器人的前面移动以及不断变化的环境,在此之后移动或更换对象。机器人已经绘制了现场。本文介绍了更换式SLAM,这是一种在动态和不断变化的环境中强大的视觉猛烈抨击的方法。这是通过使用与长期数据关联算法结合的贝叶斯过滤器来实现的。此外,它采用了一种有效的算法,用于基于对象检测的动态关键点过滤,该对象检测正确识别了不动态的边界框中的特征,从而阻止了可能导致轨道丢失的功能的耗竭。此外,开发了一个新的数据集,其中包含RGB-D数据,专门针对评估对象级别的变化环境,称为PUC-USP数据集。使用移动机器人,RGB-D摄像头和运动捕获系统创建了六个序列。这些序列旨在捕获可能导致跟踪故障或地图损坏的不同情况。据我们所知,更换 - 峰是第一个对动态和不断变化的环境既有坚固耐用的视觉大满贯系统,又不假设给定的相机姿势或已知地图,也能够实时运行。使用基准数据集对所提出的方法进行了评估,并将其与其他最先进的方法进行了比较,证明是高度准确的。
translated by 谷歌翻译
在这项工作中,我们探讨了对物体在看不见的世界中同时本地化和映射中的使用,并提出了一个对象辅助系统(OA-Slam)。更确切地说,我们表明,与低级点相比,物体的主要好处在于它们的高级语义和歧视力。相反,要点比代表对象(Cuboid或椭圆形)的通用粗模型具有更好的空间定位精度。我们表明,将点和对象组合非常有趣,可以解决相机姿势恢复的问题。我们的主要贡献是:(1)我们使用高级对象地标提高了SLAM系统的重新定位能力; (2)我们构建了一个能够使用3D椭圆形识别,跟踪和重建对象的自动系统; (3)我们表明,基于对象的本地化可用于重新初始化或恢复相机跟踪。我们的全自动系统允许对象映射和增强姿势跟踪恢复,我们认为这可以极大地受益于AR社区。我们的实验表明,可以从经典方法失败的视点重新定位相机。我们证明,尽管跟踪损失损失,但这种本地化使SLAM系统仍可以继续工作,而这种损失可能会经常发生在不理会的用户中。我们的代码和测试数据在gitlab.inria.fr/tangram/oa-slam上发布。
translated by 谷歌翻译
This paper presents ORB-SLAM, a feature-based monocular SLAM system that operates in real time, in small and large, indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.
translated by 谷歌翻译
由于其许多潜在应用,从视频中估算人类运动是一个活跃的研究领域。大多数最先进的方法可以预测单个图像的人类形状和姿势估计,并且不利用视频中可用的时间信息。许多“野生”运动序列被移动的摄像机捕获,这为估计增加了混合的摄像头和人类运动的并发症。因此,我们介绍了Bodyslam,这是一种单眼大满贯系统,共同估计人体的位置,形状和姿势以及摄像机轨迹。我们还引入了一种新型的人类运动模型,以限制顺序身体姿势并观察场景的规模。通过通过移动的单眼相机捕获的人类运动的视频序列进行的一系列实验,我们证明了Bodyslam与单独估计这些估计相比,可以改善所有人体参数和相机的估计。
translated by 谷歌翻译
Ego-pose estimation and dynamic object tracking are two critical problems for autonomous driving systems. The solutions to these problems are generally based on their respective assumptions, \ie{the static world assumption for simultaneous localization and mapping (SLAM) and the accurate ego-pose assumption for object tracking}. However, these assumptions are challenging to hold in dynamic road scenarios, where SLAM and object tracking become closely correlated. Therefore, we propose DL-SLOT, a dynamic LiDAR SLAM and object tracking method, to simultaneously address these two coupled problems. This method integrates the state estimations of both the autonomous vehicle and the stationary and dynamic objects in the environment into a unified optimization framework. First, we used object detection to identify all points belonging to potentially dynamic objects. Subsequently, a LiDAR odometry was conducted using the filtered point cloud. Simultaneously, we proposed a sliding window-based object association method that accurately associates objects according to the historical trajectories of tracked objects. The ego-states and those of the stationary and dynamic objects are integrated into the sliding window-based collaborative graph optimization. The stationary objects are subsequently restored from the potentially dynamic object set. Finally, a global pose-graph is implemented to eliminate the accumulated error. Experiments on KITTI datasets demonstrate that our method achieves better accuracy than SLAM and object tracking baseline methods. This confirms that solving SLAM and object tracking simultaneously is mutually advantageous, dramatically improving the robustness and accuracy of SLAM and object tracking in dynamic road scenarios.
translated by 谷歌翻译
在本文中,我们提出了一个紧密耦合的视觉惯性对象级多效性动态大满贯系统。即使在极其动态的场景中,它也可以为摄像机姿势,速度,IMU偏见并构建一个密集的3D重建对象级映射图。我们的系统可以通过稳健的传感器和对象跟踪,可以强牢固地跟踪和重建任意对象的几何形状,其语义和运动的几何形状,其语义和运动的几何形状,并通过逐步融合相关的颜色,深度,语义和前景对象概率概率。此外,当对象在视野视野外丢失或移动时,我们的系统可以在重新观察时可靠地恢复其姿势。我们通过定量和定性测试现实世界数据序列来证明我们方法的鲁棒性和准确性。
translated by 谷歌翻译
由于其对环境变化的鲁棒性,视觉猛感的间接方法是受欢迎的。 ORB-SLAM2 \ CITE {ORBSLM2}是该域中的基准方法,但是,除非选择帧作为关键帧,否则它会消耗从未被重用的描述符。轻量级和高效,因为它跟踪相邻帧之间的关键点而不计算描述符。为此,基于稀疏光流提出了一种两个级粗到微小描述符独立的Keypoint匹配方法。在第一阶段,我们通过简单但有效的运动模型预测初始关键点对应,然后通过基于金字塔的稀疏光流跟踪鲁棒地建立了对应关系。在第二阶段,我们利用运动平滑度和末端几何形状的约束来改进对应关系。特别是,我们的方法仅计算关键帧的描述符。我们在\ texit {tum}和\ texit {icl-nuim} RGB-D数据集上测试Fastorb-Slam,并将其准确性和效率与九种现有的RGB-D SLAM方法进行比较。定性和定量结果表明,我们的方法实现了最先进的准确性,并且大约是ORB-SLAM2的两倍。
translated by 谷歌翻译
a) Stereo input: trajectory and sparse reconstruction of an urban environment with multiple loop closures. (b) RGB-D input: keyframes and dense pointcloud of a room scene with one loop closure. The pointcloud is rendered by backprojecting the sensor depth maps from estimated keyframe poses. No fusion is performed.
translated by 谷歌翻译
当视野中有许多移动对象时,基于静态场景假设的SLAM系统会引入重大估计错误。跟踪和维护语义对象有益于场景理解,并为计划和控制模块提供丰富的决策信息。本文介绍了MLO,这是一种多对象的激光雷达探光仪,该镜像仅使用激光雷达传感器跟踪自我运动和语义对象。为了实现对多个对象的准确和强大的跟踪,我们提出了一个最小二乘估计器,该估计器融合了3D边界框和几何点云,用于对象状态更新。通过分析跟踪列表中的对象运动状态,映射模块使用静态对象和环境特征来消除累积错误。同时,它在MAP坐标中提供了连续的对象轨迹。我们的方法在公共Kitti数据集的不同情况下进行了定性和定量评估。实验结果表明,在高度动态,非结构化和未知的语义场景中,MLO的自我定位精度比最先进的系统更好。同时,与基于滤波的方法相比,具有语义几何融合的多目标跟踪方法在跟踪准确性和一致性方面也具有明显的优势。
translated by 谷歌翻译
现代视觉惯性导航系统(VINS)面临着实际部署中的一个关键挑战:他们需要在高度动态的环境中可靠且强大地运行。当前最佳解决方案仅根据对象类别的语义将动态对象过滤为异常值。这样的方法不缩放,因为它需要语义分类器来包含所有可能移动的对象类;这很难定义,更不用说部署。另一方面,许多现实世界的环境以墙壁和地面等平面形式表现出强大的结构规律,这也是至关重要的。我们呈现RP-VIO,一种单眼视觉惯性内径系统,可以利用这些平面的简单几何形状,以改善充满活力环境的鲁棒性和准确性。由于现有数据集具有有限数量的动态元素,因此我们还提供了一种高动态的光致态度合成数据集,用于更有效地对现代VINS系统的功能的评估。我们评估我们在该数据集中的方法,以及来自标准数据集的三个不同序列,包括两个真实的动态序列,并在最先进的单眼视觉惯性内径系统上显示出鲁棒性和准确性的显着提高。我们还显示在模拟中,通过简单的动态特征掩蔽方法改进。我们的代码和数据集是公开可用的。
translated by 谷歌翻译
在本文中,我们考虑了视觉同时定位和映射(SLAM)的实际应用中的问题。随着技术在广泛范围中的普及和应用,SLAM系统的可实用性已成为一个在准确性和鲁棒性之后,例如,如何保持系统的稳定性并实现低文本和低文本和中的准确姿势估计动态环境以及如何在真实场景中改善系统的普遍性和实时性能。动态对象在高度动态的环境中的影响。我们还提出了一种新型的全局灰色相似性(GGS)算法,以实现合理的钥匙扣选择和有效的环闭合检测(LCD)。受益于GGS,PLD-SLAM可以在大多数真实场景中实现实时准确的姿势估计,而无需预先训练和加载巨大的功能词典模型。为了验证拟议系统的性能,我们将其与公共数据集Kitti,Euroc MAV和我们提供的室内立体声数据集的现有最新方法(SOTA)方法进行了比较。实验表明,实验表明PLD-SLAM在大多数情况下确保稳定性和准确性,具有更好的实时性能。此外,通过分析GGS的实验结果,我们可以发现它在关键帧选择和LCD中具有出色的性能。
translated by 谷歌翻译
Visually impaired people usually find it hard to travel independently in many public places such as airports and shopping malls due to the problems of obstacle avoidance and guidance to the desired location. Therefore, in the highly dynamic indoor environment, how to improve indoor navigation robot localization and navigation accuracy so that they guide the visually impaired well becomes a problem. One way is to use visual SLAM. However, typical visual SLAM either assumes a static environment, which may lead to less accurate results in dynamic environments or assumes that the targets are all dynamic and removes all the feature points above, sacrificing computational speed to a large extent with the available computational power. This paper seeks to explore marginal localization and navigation systems for indoor navigation robotics. The proposed system is designed to improve localization and navigation accuracy in highly dynamic environments by identifying and tracking potentially moving objects and using vector field histograms for local path planning and obstacle avoidance. The system has been tested on a public indoor RGB-D dataset, and the results show that the new system improves accuracy and robustness while reducing computation time in highly dynamic indoor scenes.
translated by 谷歌翻译
在不同情况下,已经探索了相对旋转和翻译估计任务的最小解决方案,通常依赖于所谓的共同可见度图。但是,如何在没有重叠的两个框架之间建立直接旋转关系仍然是一个公开主题,如果解决了,它可以大大提高视觉尾声的准确性。在本文中,提出了一种新的最小解决方案,以通过利用新的图形结构来求解两个图像之间没有重叠区域的相对旋转估计,我们将其称为扩展性图(E-Graph)。与共同可见度图不同,高级标志(包括消失方向和平面正常)存储在我们的电子图纸中,这些图形在几何上可扩展。基于电子图表,旋转估计问题变得更简单,更优雅,因为它可以处理纯粹的旋转运动,并且需要更少的假设,例如曼哈顿/亚特兰大世界,平面/垂直运动。最后,我们将旋转估计策略嵌入完整的相机跟踪和映射系统中,该系统获得了6-DOF相机姿势和密集的3D网格模型。对公共基准测试的广泛实验表明,所提出的方法实现了最新的跟踪性能。
translated by 谷歌翻译
在本文中,我们介绍一种方法来自动重建与来自单个RGB视频相互作用的人的3D运动。我们的方法估计人的3D与物体姿势,接触位置和施加在人体上的接触力的姿势。这项工作的主要贡献是三倍。首先,我们介绍一种通过建模触点和相互作用的动态来联合估计人与人的运动和致动力的方法。这是一个大规模的轨迹优化问题。其次,我们开发一种方法来从输入视频自动识别,从输入视频中识别人和物体或地面之间的2D位置和时序,从而显着简化了优化的复杂性。第三,我们在最近的视频+ Mocap数据集上验证了捕获典型的Parkour行动的方法,并在互联网视频的新数据集上展示其表现,显示人们在不受约束的环境中操纵各种工具。
translated by 谷歌翻译
在本文中,我们开发了一个健壮,有效的视觉大满贯系统,该系统利用了低阈值,基线线和闭环钥匙帧功能的空间抑制。使用ORB-SLAM2,我们的方法包括立体声匹配,框架跟踪,本地捆绑包调整以及线路和点全局捆绑捆绑调整。特别是,我们根据基线贡献了重新注射。融合系统中的线路会消耗巨大的时间,我们减少了从分布点到利用特征点的空间抑制的时间。此外,低阈值关键点在处理低纹理方面可能更有效。为了克服跟踪钥匙帧的冗余问题,提出了有效且可靠的闭环跟踪钥匙框架。所提出的SLAM在Kitti和Euroc数据集中进行了广泛的测试,表明所提出的系统在各种情况下都优于最新方法。
translated by 谷歌翻译