机器人从能够根据其材料属性进行对象进行分类或操纵对象而受益。这种能力可通过适当的抓握姿势和力选择来确保对复杂物体进行精细操纵。先前的工作集中在触觉或视觉处理上,以确定掌握时间的材料类型。在这项工作中,我们介绍了一种新型的平行机器人抓地力设计,以及一种从握把手指内收集光谱读数和视觉图像的方法。我们训练非线性支持向量机(SVM),该机器可以通过递归估计将要抓住的物体的材料分类,并且随着从指尖到物体的距离降低的距离,置信度越来越高。为了验证硬件设计和分类方法,我们从16种真实和假水果品种(由聚苯乙烯/塑料组成)中收集样品,从而导致一个包含光谱曲线,场景图像和高分辨率纹理图像的数据集,因为对象被掌握,提起并释放。我们的建模方法证明了在32类决策问题中对对象进行分类时的准确性为96.4%。这比最先进的计算机视觉算法的状态在区分视觉上相似的材料方面提高了29.4%。与先前的工作相反,我们的递归估计模型解释了频谱信号强度的增加,并允许随着抓手接近对象做出决策。我们得出的结论是,光谱法是使机器人不仅能够对握住的对象进行分类,还可以理解其潜在的材料组成。
translated by 谷歌翻译
Batch Normalization (BN) is an important preprocessing step to many deep learning applications. Since it is a data-dependent process, for some homogeneous datasets it is a redundant or even a performance-degrading process. In this paper, we propose an early-stage feasibility assessment method for estimating the benefits of applying BN on the given data batches. The proposed method uses a novel threshold-based approach to classify the training data batches into two sets according to their need for normalization. The need for normalization is decided based on the feature heterogeneity of the considered batch. The proposed approach is a pre-training processing, which implies no training overhead. The evaluation results show that the proposed approach achieves better performance mostly in small batch sizes than the traditional BN using MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets. Additionally, the network stability is increased by reducing the occurrence of internal variable transformation.
translated by 谷歌翻译
Adaptive mesh refinement (AMR) is necessary for efficient finite element simulations of complex physical phenomenon, as it allocates limited computational budget based on the need for higher or lower resolution, which varies over space and time. We present a novel formulation of AMR as a fully-cooperative Markov game, in which each element is an independent agent who makes refinement and de-refinement choices based on local information. We design a novel deep multi-agent reinforcement learning (MARL) algorithm called Value Decomposition Graph Network (VDGN), which solves the two core challenges that AMR poses for MARL: posthumous credit assignment due to agent creation and deletion, and unstructured observations due to the diversity of mesh geometries. For the first time, we show that MARL enables anticipatory refinement of regions that will encounter complex features at future times, thereby unlocking entirely new regions of the error-cost objective landscape that are inaccessible by traditional methods based on local error estimators. Comprehensive experiments show that VDGN policies significantly outperform error threshold-based policies in global error and cost metrics. We show that learned policies generalize to test problems with physical features, mesh geometries, and longer simulation times that were not seen in training. We also extend VDGN with multi-objective optimization capabilities to find the Pareto front of the tradeoff between cost and error.
translated by 谷歌翻译
面部情感识别是识别心理学用来诊断患者的重要工具之一。面部和面部情感识别是机器学习卓越的领域。由于不同的环境,例如照明条件,姿势变化,偏航运动和遮挡,面部情绪识别是对数字图像处理的开放挑战。深度学习方法已显示出图像识别的显着改善。但是,准确性和时间仍然需要改进。这项研究旨在在训练期间提高面部情绪识别的准确性,并使用Extreme Learning Machine(CNNeelm)增强的修改后的卷积神经网络减少处理时间。该系统需要(CNNeelm)提高培训期间图像注册的准确性。此外,该系统通过拟议的CNNeelm模型认识到六种面部情绪快乐,悲伤,厌恶,恐惧,惊喜和中立。研究表明,与经过改进的随机梯度下降(SGD)技术相比,总体面部情绪识别精度的提高了2%。借助Extreme Learning Machine(ELM)分类器,处理时间从113ms中降至65ms,可以从20fps的视频剪辑中平滑地对每个帧进行分类。使用预先训练的InceptionV3模型,建议使用JAFFE,CK+和FER2013表达数据集训练所提出的CNNeelm模型。仿真结果显示出准确性和处理时间的显着改善,使该模型适合视频分析过程。此外,该研究解决了处理面部图像所需的大量处理时间的问题。
translated by 谷歌翻译
单个异常行为因人群的大小,上下文和场景而异。当检测,跟踪和认可异常行为的人时,诸如部分阻塞,模糊,大数字异常行为和摄像机观看之类的挑战发生在大规模的人群中。在本文中,我们的贡献是双重的。首先,我们介绍了一个注释和标记的大规模人群异常行为hajj数据集(hajjv2)。其次,我们提出了两种混合卷积神经网络(CNN)和随机森林(RFS)的两种方法,以检测和识别小型和大型人群视频中的时空异常行为。在小型人群视频中,对Resnet-50预训练的CNN模型进行了微调,以验证空间域中的每个帧是正常还是异常。如果观察到异常行为,则使用基于运动的个体检测方法基于角链光流的大小和方向来定位和跟踪具有异常行为的个体。大规模人群视频中使用了Kalman过滤器,以预测和跟踪随后的帧中检测到的个体。然后,将均值,方差和标准偏差统计特征计算出来并馈送到RF,以对时间域中的行为异常行为进行分类。在大规模的人群中,我们使用Yolov2对象检测技术微调Resnet-50模型,以检测空间域中行为异常的个体。
translated by 谷歌翻译
移动机器人的推理和计划是一个具有挑战性的问题,随着世界的发展,机器人的目标可能会改变。解决这个问题的一种技术是目标推理,代理人不仅原因是其行动的原因,而且还要实现哪些目标。尽管已经对单个代理的目标推理进行了广泛的研究,但分布式,多代理目标推理带来了其他挑战,尤其是在分布式环境中。在这种情况下,必须进行某种形式的协调以实现合作行为。先前的目标推理方法与其他代理商共享代理商的世界模型,这已经实现了基本的合作。但是,代理商的目标及其意图通常没有共享。在本文中,我们提出了一种解决此限制的方法。扩展了现有的目标推理框架,我们建议通过承诺在多个代理之间实现合作行为,在这种情况下,代理商可能会保证某些事实在将来的某个时候将是正确的。分享这些诺言使其他代理人不仅可以考虑世界的当前状态,而且还可以在决定下一步追求哪个目标时其他代理商的意图。我们描述了如何将承诺纳入目标生命周期,这是一种常用的目标改进机制。然后,我们通过将PDDL计划的定时初始文字(TIL)连接到计划特定目标时如何使用承诺。最后,我们在简化的物流方案中评估了我们的原型实现。
translated by 谷歌翻译
在过去的几年中,对MPMRI的恶性前列腺癌患者进行了自动诊断。模型解释和域漂移一直是临床利用的主要路障。作为我们以前的工作的扩展,我们在公共队列上培训了一个定制的卷积神经网络,其中有201名患者和感兴趣区域周围的裁剪2D斑块作为输入,将前列腺的2.5d片用作前列腺的2.5d片。使用Autokeras在模型空间中搜索了输入和最佳模型。外围区(PZ)和中央腺(CG)分别进行了训练和测试,有效地证明了一些不同的东西,PZ探测器和CG探测器有效地展示了序列中最可疑的切片,希望极大地减轻医生的工作量。
translated by 谷歌翻译
自动化的脑肿瘤检测已成为一项高度可观的医学诊断研究。在最近的医学诊断中,高度考虑检测和分类用于采用机器学习和深度学习技术。然而,需要改善当前模型的准确性和性能以进行合适的治疗。在本文中,通过采用增强的优化算法来确保深度卷积学习的改进,因此,基于改进的Harris Hawks优化(HHO),深度卷积神经网络(DCNN)被认为是G-HHO。这种杂交具有灰狼优化(GWO)和HHO,以提供更好的结果,从而限制了收敛速度和增强性能。此外,采用大小阈值来分割强调脑肿瘤检测的肿瘤部分。进行了实验研究,以验证2073年总数增强MRI图像的建议方法的性能。通过将其与巨大增强MRI图像上的九种现有算法进行比较,以准确性,精度,召回,F量,执行时间和内存使用情况进行比较,可以确保该技术的性能。性能比较表明,DCNN-G-HHO比现有方法更成功,尤其是在97%的评分精度下。此外,统计性能分析表明,建议的方法更快,并且在MR图像上识别和分类脑肿瘤癌的记忆力较少。此验证的实施是在Python平台上进行的。建议方法的相关代码可在以下网址提供:https://github.com/bryarahassan/dcnn-g-hho。
translated by 谷歌翻译
在用于测量溃疡性结肠炎的内窥镜活性的评分系统中,例如蛋黄酱内窥镜评分或溃疡性结肠炎内镜指数严重程度,水平随疾病活动的严重程度而增加。分数之间的相对排名使其成为序数回归问题。另一方面,大多数研究都使用分类跨凝结损失函数来训练深度学习模型,这对于顺序回归问题并不是最佳的。在这项研究中,我们提出了一种新颖的损失函数,即距离距离加权的跨凝结(CDW-CE),该函数尊重类的顺序,并在计算成本时考虑了类的距离。实验评估表明,经过CDW-CE训练的模型优于训练的模型,该模型训练了用于序数回归问题的常规分类横向和其他常用损失函数。此外,经过CDW-CE损失训练的模型的类激活图具有更大的歧视性,并且域专家发现它们更合理。
translated by 谷歌翻译
精确的位置感测对于机器人中的状态估计和控制很重要。可靠和准确的位置传感器通常昂贵且难以定制。将它们纳入具有非常紧密的体积限制的系统,例如模块化机器人特别困难。涂布器是低成本,可靠和高度可定制的位置传感器,但它们的性能高度依赖于制造和校准过程。本文介绍了一种Kalman滤波器,具有简化的观察模型,用于处理导致使用低成本微控制器的非线性问题。另外,为了示例模块机器人,闪光-EP,提出了一种在包括制造,表征和估计的各种感测模式中使用涂布器的完整解决方案。该解决方案可以很容易地适应各种应用。
translated by 谷歌翻译