数十年来,计算机系统持有大量个人数据。一方面,这种数据丰度允许在人工智能(AI),尤其是机器学习(ML)模型中突破。另一方面,它可能威胁用户的隐私并削弱人类与人工智能之间的信任。最近的法规要求,可以从一般情况下从计算机系统中删除有关用户的私人信息,特别是根据要求从ML模型中删除(例如,“被遗忘的权利”)。虽然从后端数据库中删除数据应该很简单,但在AI上下文中,它不够,因为ML模型经常“记住”旧数据。现有的对抗攻击证明,我们可以从训练有素的模型中学习私人会员或培训数据的属性。这种现象要求采用新的范式,即机器学习,以使ML模型忘记了特定的数据。事实证明,由于缺乏共同的框架和资源,最近在机器上学习的工作无法完全解决问题。在本调查文件中,我们试图在其定义,场景,机制和应用中对机器进行彻底的研究。具体而言,作为最先进的研究的类别集合,我们希望为那些寻求机器未学习的入门及其各种表述,设计要求,删除请求,算法和用途的人提供广泛的参考。 ML申请。此外,我们希望概述范式中的关键发现和趋势,并突出显示尚未看到机器无法使用的新研究领域,但仍可以受益匪浅。我们希望这项调查为ML研究人员以及寻求创新隐私技术的研究人员提供宝贵的参考。我们的资源是在https://github.com/tamlhp/awesome-machine-unlearning上。
translated by 谷歌翻译
药物误解是可能导致对患者造成不可预测后果的风险之一。为了减轻这种风险,我们开发了一个自动系统,该系统可以正确识别移动图像中的药丸的处方。具体来说,我们定义了所谓的药丸匹配任务,该任务试图匹配处方药中药丸所拍摄的药丸的图像。然后,我们提出了PIMA,这是一种使用图神经网络(GNN)和对比度学习来解决目标问题的新方法。特别是,GNN用于学习处方中文本框之间的空间相关性,从而突出显示带有药丸名称的文本框。此外,采用对比度学习来促进药丸名称的文本表示与药丸图像的视觉表示之间的跨模式相似性的建模。我们进行了广泛的实验,并证明PIMA在我们构建的药丸和处方图像的现实数据集上优于基线模型。具体而言,与其他基线相比,PIMA的准确性从19.09%提高到46.95%。我们认为,我们的工作可以为建立新的临床应用并改善药物安全和患者护理提供新的机会。
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
鉴于在各种条件和背景下捕获的图像的识别药物已经变得越来越重要。已经致力于利用基于深度学习的方法来解决文献中的药丸识别问题。但是,由于药丸的外观之间的相似性很高,因此经常发生错误识别,因此识别药丸是一个挑战。为此,在本文中,我们介绍了一种名为Pika的新颖方法,该方法利用外部知识来增强药丸识别精度。具体来说,我们解决了一种实用的情况(我们称之为上下文药丸识别),旨在在患者药丸摄入量的情况下识别药丸。首先,我们提出了一种新的方法,用于建模在存在外部数据源的情况下,在这种情况下,在存在外部处方的情况下,药丸之间的隐式关联。其次,我们提出了一个基于步行的图形嵌入模型,该模型从图形空间转换为矢量空间,并提取药丸的凝结关系。第三,提供了最终框架,该框架利用基于图像的视觉和基于图的关系特征来完成药丸识别任务。在此框架内,每种药丸的视觉表示形式都映射到图形嵌入空间,然后用来通过图表执行注意力,从而产生了有助于最终分类的语义丰富的上下文矢量。据我们所知,这是第一项使用外部处方数据来建立药物之间的关联并使用此帮助信息对其进行分类的研究。皮卡(Pika)的体系结构轻巧,并且具有将识别骨架纳入任何识别骨架的灵活性。实验结果表明,通过利用外部知识图,与基线相比,PIKA可以将识别精度从4.8%提高到34.1%。
translated by 谷歌翻译
在社交媒体上传播谣言对社会构成了重要威胁,因此最近提出了各种谣言检测技术。然而,现有的工作重点是\ emph {what}实体构成谣言,但几乎没有支持理解\ emph {为什么}实体已被归类为这样。这样可以防止对检测的谣言以及对策设计的有效评估。在这项工作中,我们认为,可以通过过去检测到的相关谣言的例子来给出检测到的谣言的解释。一系列类似的谣言有助于用户概括,即了解控制谣言的探测的特性。由于通常使用特征声明的图表对社交媒体的谣言传播通常是建模的,因此我们提出了一种逐个示例的方法,鉴于谣言图,它从过去的谣言中提取了$ k $最相似和最多的子图。挑战是所有计算都需要快速评估图之间的相似性。为了在流式设置中实现该方法的有效和适应性实现,我们提出了一种新颖的图表学习技术,并报告了实施注意事项。我们的评估实验表明,我们的方法在为各种谣言传播行为提供有意义的解释方面优于基线技术。
translated by 谷歌翻译
在过去的几十年中,由于其在广泛的应用中,现场文本认可从学术界和实际用户获得了全世界的关注。尽管在光学字符识别方面取得了成就,但由于诸如扭曲或不规则布局等固有问题,现场文本识别仍然具有挑战性。大多数现有方法主要利用基于复发或卷积的神经网络。然而,虽然经常性的神经网络(RNN)通常由于顺序计算而遭受慢的训练速度,并且遇到消失的梯度或瓶颈,但CNN在复杂性和性能之间衡量折衷。在本文中,我们介绍了SAFL,一种基于自我关注的神经网络模型,具有场景文本识别的焦点损失,克服现有方法的限制。使用焦损而不是负值对数似然有助于模型更多地关注低频样本训练。此外,为应对扭曲和不规则文本,我们在传递到识别网络之前,我们利用空间变换(STN)来纠正文本。我们执行实验以比较拟议模型的性能与七个基准。数值结果表明,我们的模型实现了最佳性能。
translated by 谷歌翻译
知识图(kg)对齐 - 指识别不同kgs中同一件事的实体的任务 - 被认为是KG构造领域中最重要的操作之一。然而,现有的对齐技术通常假设输入kgs是完整的并且同性的,这是由于域,大小和稀疏性的现实世界异质性而不是真实。在这项工作中,我们解决了与代表学习对齐不完整的KG对齐的问题。我们的KG嵌入式框架利用了两个特征频道:基于传输型和基于接近的。前者通过翻译路径捕获实体之间的一致性约束,而后者通过注意引导关系感知图形神经网络捕获KG的邻域结构。两个特征频道共同学习以在输入kgs之间交换重要特征,同时强制在同一嵌入空间中强制输入kg的输出表示。此外,我们开发了缺失的链接检测器,该探测器发现并恢复培训过程中输入kgs中的缺失链接,这有助于减轻不完整性问题,从而提高学习象征的兼容性。然后将嵌入的熔合融合以生成对准结果,并且高置信匹配节点对被更新为预先调整的监控数据以逐渐改善嵌入。经验结果表明,我们的型号比SOTA更准确,而且对不同级别的不完整性较高,高达15.2 \%。我们还证明了KGS之间交换的知识有助于揭示知识图表(A.K.A.知识完成)的看不见的事实,结果比SOTA知识图形完成技术高3.5 \%。
translated by 谷歌翻译
近年来,视觉伪造达到了人类无法识别欺诈的复杂程度,这对信息安全构成了重大威胁。出现了广泛的恶意申请,例如名人的假新闻,诽谤或勒索,政治战中的政治家冒充,以及谣言的传播吸引观点。结果,已经提出了一种富有的视觉验证技术,以试图阻止这种危险的趋势。在本文中,我们使用全面的和经验方法,提供了一种基准,可以对视觉伪造和视觉取证进行深入的洞察。更具体地,我们开发一个独立的框架,整合最先进的假冒生成器和探测器,并使用各种标准来测量这些技术的性能。我们还对基准测试结果进行了详尽的分析,确定了在措施与对策之间永无止境的战争中的比较参考的方法的特征。
translated by 谷歌翻译
深度学习已成功地用于解决从大数据分析到计算机视觉和人级控制的各种复杂问题。但是,还采用了深度学习进步来创建可能构成隐私,民主和国家安全威胁的软件。最近出现的那些深度学习驱动的应用程序之一是Deepfake。 DeepFake算法可以创建人类无法将它们与真实图像区分开的假图像和视频。因此,可以自动检测和评估数字视觉媒体完整性的技术的建议是必不可少的。本文介绍了一项用于创造深击的算法的调查,更重要的是,提出的方法旨在检测迄今为止文献中的深击。我们对与Deepfake技术有关的挑战,研究趋势和方向进行了广泛的讨论。通过回顾深层味和最先进的深层检测方法的背景,本研究提供了深入的深层技术的概述,并促进了新的,更强大的方法的发展,以应对日益挑战性的深击。
translated by 谷歌翻译
Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.
translated by 谷歌翻译