虽然小说计算机视觉架构正在获得牵引力,但模型架构的影响往往与培训方法的变化或探索有关。基于身份映射的架构Resnets和Densenets在图像分类任务中承诺路径断开结果,并且如果给出的数据相当有限,甚至现在甚至是现在的方法。考虑到有限资源的易培训,这项工作重新审视ERSNET并通过使用混合数据增强作为正则化和调整超参数来改善Reset50 \ Cite {Resnets}。
translated by 谷歌翻译
The necessity of data driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a Healthcare Provider Facility or a Hospital (from here on termed as Facility) Market Share is of key importance. This pilot study aims at developing a data driven Machine Learning - Regression framework which aids strategists in formulating key decisions to improve the Facilitys Market Share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study; and the data spanning across 60 key Facilities in Washington State and about 3 years of historical data is considered. In the current analysis Market Share is termed as the ratio of facility encounters to the total encounters among the group of potential competitor facilities. The current study proposes a novel two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. The proposed method to identify pool of competitors in current analysis, develops Directed Acyclic Graphs (DAGs), feature level word vectors and evaluates the key connected components at facility level. This technique is robust since its data driven which minimizes the bias from empirical techniques. Post identifying the set of competitors among facilities, developed Regression model to predict the Market share. For relative quantification of features at a facility level, incorporated SHAP a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share.
translated by 谷歌翻译
Achieving knowledge sharing within an artificial swarm system could lead to significant development in autonomous multiagent and robotic systems research and realize collective intelligence. However, this is difficult to achieve since there is no generic framework to transfer skills between agents other than a query-response-based approach. Moreover, natural living systems have a "forgetfulness" property for everything they learn. Analyzing such ephemeral nature (temporal memory properties of new knowledge gained) in artificial systems has never been studied in the literature. We propose a behavior tree-based framework to realize a query-response mechanism for transferring skills encoded as the condition-action control sub-flow of that portion of the knowledge between agents to fill this gap. We simulate a multiagent group with different initial knowledge on a foraging mission. While performing basic operations, each robot queries other robots to respond to an unknown condition. The responding robot shares the control actions by sharing a portion of the behavior tree that addresses the queries. Specifically, we investigate the ephemeral nature of the new knowledge gained through such a framework, where the knowledge gained by the agent is either limited due to memory or is forgotten over time. Our investigations show that knowledge grows proportionally with the duration of remembrance, which is trivial. However, we found minimal impact on knowledge growth due to memory. We compare these cases against a baseline that involved full knowledge pre-coded on all agents. We found that knowledge-sharing strived to match the baseline condition by sharing and achieving knowledge growth as a collective system.
translated by 谷歌翻译
Experiments using large numbers of miniature swarm robots are desirable to teach, study, and test multi-robot and swarm intelligence algorithms and their applications. To realize the full potential of a swarm robot, it should be capable of not only motion but also sensing, computing, communication, and power management modules with multiple options. Current swarm robot platforms developed for commercial and academic research purposes lack several of these critical attributes by focusing only on a few of these aspects. Therefore, in this paper, we propose the HeRoSwarm, a fully-capable swarm robot platform with open-source hardware and software support. The proposed robot hardware is a low-cost design with commercial off-the-shelf components that uniquely integrates multiple sensing, communication, and computing modalities with various power management capabilities into a tiny footprint. Moreover, our swarm robot with odometry capability with Robot Operating Systems (ROS) support is unique in its kind. This simple yet powerful swarm robot design has been extensively verified with different prototyping variants and multi-robot experimental demonstrations.
translated by 谷歌翻译
当个人指出或谈论其他人的话语时,语言永久不平等的能力最为明显。尽管当前对NLP中偏见的研究主要依赖于对特定群体的仇恨言论或偏见,但我们认为我们可以通过建模说话者,文本和目标来对偏见与语言使用之间的相互作用的相互作用更加微妙和细微的理解在文字中。在本文中,我们介绍了一个由美国国会议员注释的3033个英语推文的数据集,并介绍了人际情绪的注释,并对人际关系成员标签进行了“找到监督”。我们发现,诸如愤怒和厌恶之类的负面情绪主要用于群体外部情况,主要针对对方领导人。虽然人类可以表现出色,而不是鉴定人际群体成员资格的机会,但神经模型的表现要好得多。此外,人际关系成员资格和人际关系情感之间的共同编码使后者有一些表现的提高。这项工作旨在将NLP中偏见的研究从特定的偏见中重新调整为封装说话者,文本,目标和社会动态之间关系的偏见。本文的数据和代码可从https://github.com/venkatasg/interpersonal-dynamics获得
translated by 谷歌翻译
该文档概述了Prospero预先注册的方案,用于对口腔或口腔或肉桂癌治疗后语音变化的系统审查进行系统审查。口腔中肿瘤的治疗可能会导致生理变化,这可能导致发音困难。由于疤痕组织和/或潜在的(术后)放射治疗,舌头变得不那么流动。此外,组织损失可能会为气流或极限收缩可能性创造旁路。为了更好地了解语音问题的性质,需要有关枢纽运动的信息,因为感知信息或声学信息仅提供了间接的关节变化证据。因此,这项系统的综述将回顾研究,该研究直接测量口腔或口咽癌治疗后舌,下巴和嘴唇的关节运动。
translated by 谷歌翻译
在本文中,我们提出了一条新型的管道,该管道利用语言基础模型进行时间顺序模式挖掘,例如人类的移动性预测任务。例如,在预测利益(POI)客户流量的任务中,通常从历史日志中提取访问次数,并且仅使用数值数据来预测访客流。在这项研究中,我们直接对包含各种信息的自然语言输入执行预测任务,例如数值和上下文的语义信息。引入特定的提示以将数值时间序列转换为句子,以便可以直接应用现有的语言模型。我们设计了一个Auxmoblcast管道,用于预测每个POI中的访问者数量,将辅助POI类别分类任务与编码器架构结构集成在一起。这项研究提供了所提出的Auxmoblcast管道有效性以发现移动性预测任务中的顺序模式的经验证据。在三个现实世界数据集上评估的结果表明,预训练的语言基础模型在预测时间序列中也具有良好的性能。这项研究可以提供有远见的见解,并为预测人类流动性提供新的研究方向。
translated by 谷歌翻译
多机器人和多代理系统通过系统的局部行为集成在组中表现出集体(Swarm)智能。分享有关任务和环境知识的代理商可以提高个人和任务水平的绩效。但是,这很难实现,部分原因是缺乏用于在代理之间转移一部分知识(行为)的通用框架。本文提出了一个新的知识表示框架和一种称为KT-BT:通过行为树的知识转移的转移策略。 KT-BT框架遵循通过在线行为树框架进行查询反应加速机制,在该框架中,代理对未知条件进行广播查询,并使用条件性能控制子流量以适当的知识做出响应。我们嵌入了一种称为StringBT的新型语法结构,该结构编码知识,从而实现行为共享。从理论上讲,我们研究了KT-BT框架的特性,与异质系统相比,整个小组的高知识同质性具有高度知识的性质,而没有能力共享知识。我们在模拟的多机器人搜索和救援问题中广泛验证了我们的框架。结果表明,在各种情况下,成功传递知识转移并提高了群体绩效。我们进一步研究了机会和沟通范围对一组代理商中群体绩效,知识传播和功能异质性的影响,并提供有趣的见解。
translated by 谷歌翻译
尖峰神经网络(SNN)正在受到越来越多的关注,作为开发“生物学上合理”的机器学习模型的一种手段。这些网络模仿人大脑中的突触连接并产生尖峰列车,可以通过二进制值近似,从而排除了浮点算术电路的高计算成本。最近,已经引入了卷积层与SNNS的计算效率相结合的卷积层。在本文中,研究了使用脑电图(EEG)使用卷积尖峰神经网络(CSNN)作为分类器的可行性。脑电图数据是在一个实验中收集的,该实验参与者在旨在模拟城市环境的测试台上操作遥控车辆。参与者通过音频倒计时通知了进入传入的制动事件,以引起预期潜力,然后使用脑电图测量。将CSNN的性能与标准的卷积神经网络(CNN)和三个图形神经网络(GNN)进行了比较。结果表明,CSNN的表现优于其他神经网络。
translated by 谷歌翻译
近年来,尤其是在户外环境中,自我监督的单眼深度估计已取得了重大进展。但是,在大多数现有数据被手持设备捕获的室内场景中,深度预测结果无法满足。与室外环境相比,使用自我监督的方法估算室内环境的单眼视频深度,导致了两个额外的挑战:(i)室内视频序列的深度范围在不同的框架上有很大变化,使深度很难进行。网络以促进培训的一致深度线索; (ii)用手持设备记录的室内序列通常包含更多的旋转运动,这使姿势网络难以预测准确的相对摄像头姿势。在这项工作中,我们通过对这些挑战进行特殊考虑并巩固了一系列良好实践,以提高自我监督的单眼深度估计室内环境的表现,从而提出了一种新颖的框架单声道++。首先,提出了具有基于变压器的比例回归网络的深度分解模块,以明确估算全局深度尺度因子,预测的比例因子可以指示最大深度值。其次,我们不像以前的方法那样使用单阶段的姿势估计策略,而是建议利用残留姿势估计模块来估计相对摄像机在连续迭代的跨帧中构成。第三,为了为我们的残留姿势估计模块纳入广泛的坐标指南,我们建议直接在输入上执行坐标卷积编码,以实现姿势网络。提出的方法在各种基准室内数据集(即Euroc Mav,Nyuv2,扫描仪和7片)上进行了验证,证明了最先进的性能。
translated by 谷歌翻译