Unsupervised pre-training on millions of digital-born or scanned documents has shown promising advances in visual document understanding~(VDU). While various vision-language pre-training objectives are studied in existing solutions, the document textline, as an intrinsic granularity in VDU, has seldom been explored so far. A document textline usually contains words that are spatially and semantically correlated, which can be easily obtained from OCR engines. In this paper, we propose Wukong-Reader, trained with new pre-training objectives to leverage the structural knowledge nested in document textlines. We introduce textline-region contrastive learning to achieve fine-grained alignment between the visual regions and texts of document textlines. Furthermore, masked region modeling and textline-grid matching are also designed to enhance the visual and layout representations of textlines. Experiments show that our Wukong-Reader has superior performance on various VDU tasks such as information extraction. The fine-grained alignment over textlines also empowers Wukong-Reader with promising localization ability.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
With the evergrowing sizes of pre-trained models (PTMs), it has been an emerging practice to only provide the inference APIs for users, namely model-as-a-service (MaaS) setting. To adapt PTMs with model parameters frozen, most current approaches focus on the input side, seeking for powerful prompts to stimulate models for correct answers. However, we argue that input-side adaptation could be arduous due to the lack of gradient signals and they usually require thousands of API queries, resulting in high computation and time costs. In light of this, we present Decoder Tuning (DecT), which in contrast optimizes task-specific decoder networks on the output side. Specifically, DecT first extracts prompt-stimulated output scores for initial predictions. On top of that, we train an additional decoder network on the output representations to incorporate posterior data knowledge. By gradient-based optimization, DecT can be trained within several seconds and requires only one PTM query per sample. Empirically, we conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a $10^3\times$ speed-up.
translated by 谷歌翻译
Recently, Vehicle-to-Everything(V2X) cooperative perception has attracted increasing attention. Infrastructure sensors play a critical role in this research field, however, how to find the optimal placement of infrastructure sensors is rarely studied. In this paper, we investigate the problem of infrastructure sensor placement and propose a pipeline that can efficiently and effectively find optimal installation positions for infrastructure sensors in a realistic simulated environment. To better simulate and evaluate LiDAR placement, we establish a Realistic LiDAR Simulation library that can simulate the unique characteristics of different popular LiDARs and produce high-fidelity LiDAR point clouds in the CARLA simulator. Through simulating point cloud data in different LiDAR placements, we can evaluate the perception accuracy of these placements using multiple detection models. Then, we analyze the correlation between the point cloud distribution and perception accuracy by calculating the density and uniformity of regions of interest. Experiments show that the placement of infrastructure LiDAR can heavily affect the accuracy of perception. We also analyze the correlation between perception performance in the region of interest and LiDAR point cloud distribution and validate that density and uniformity can be indicators of performance.
translated by 谷歌翻译
Adding perturbations via utilizing auxiliary gradient information or discarding existing details of the benign images are two common approaches for generating adversarial examples. Though visual imperceptibility is the desired property of adversarial examples, conventional adversarial attacks still generate traceable adversarial perturbations. In this paper, we introduce a novel Adversarial Attack via Invertible Neural Networks (AdvINN) method to produce robust and imperceptible adversarial examples. Specifically, AdvINN fully takes advantage of the information preservation property of Invertible Neural Networks and thereby generates adversarial examples by simultaneously adding class-specific semantic information of the target class and dropping discriminant information of the original class. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet-1K demonstrate that the proposed AdvINN method can produce less imperceptible adversarial images than the state-of-the-art methods and AdvINN yields more robust adversarial examples with high confidence compared to other adversarial attacks.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
人类可以不断学习新知识。但是,在学习新任务后,机器学习模型在以前的任务上的性能急剧下降。认知科学指出,类似知识的竞争是遗忘的重要原因。在本文中,我们根据大脑的元学习和关联机制设计了一个用于终身学习的范式。它从两个方面解决了问题:提取知识和记忆知识。首先,我们通过背景攻击破坏样本的背景分布,从而增强了模型以提取每个任务的关键特征。其次,根据增量知识和基础知识之间的相似性,我们设计了增量知识的自适应融合,这有助于模型将能力分配到不同困难的知识。理论上分析了所提出的学习范式可以使不同任务的模型收敛到相同的最优值。提出的方法已在MNIST,CIFAR100,CUB200和ImagEnet100数据集上进行了验证。
translated by 谷歌翻译
本文调查了2D全身人类姿势估计的任务,该任务旨在将整个人体(包括身体,脚,脸部和手)局部定位在整个人体上。我们提出了一种称为Zoomnet的单网络方法,以考虑到完整人体的层次结构,并解决不同身体部位的规模变化。我们进一步提出了一个称为Zoomnas的神经体系结构搜索框架,以促进全身姿势估计的准确性和效率。Zoomnas共同搜索模型体系结构和不同子模块之间的连接,并自动为搜索的子模块分配计算复杂性。为了训练和评估Zoomnas,我们介绍了第一个大型2D人类全身数据集,即可可叶全体V1.0,它注释了133个用于野外图像的关键点。广泛的实验证明了Zoomnas的有效性和可可叶v1.0的重要性。
translated by 谷歌翻译
本文的目的是通过互动地完善对人类绩效的挑战结构的自动细分,这要么是由于可用注释的稀缺性或问题本身的难度性质,例如,在癌症或小型器官方面的难度。具体而言,我们为交互式细分(TIS)提出了一种基于变压器的新型体系结构,该体系结构将精炼任务视为将与最终用户提供的点击相似的像素分组的过程。我们提出的架构由变压器解码器变体组成,该变体自然可以实现与注意机制的特征比较。与现有方法相反,我们提出的TIS不仅限于二进制细分,因此允许用户为任意数量的类别编辑掩码。为了验证提出的方法,我们对三个具有挑战性的数据集进行了广泛的实验,并证明了比现有最新方法的卓越性能。项目页面为:https://wtliu7.github.io/tis/。
translated by 谷歌翻译
人类姿势估计旨在准确估计各种人类姿势。但是,现有的数据集通常遵循长尾巴的分布,而异常姿势仅占据一小部分,这进一步导致缺乏稀有姿势的多样性。这些问题导致当前姿势估计器的概括能力。在本文中,我们提出了一种简单而有效的数据增强方法,称为姿势转化(后部),以减轻上述问题。具体而言,我们建议姿势转化模块(PTM)创建具有多种姿势并采用姿势歧视者的新训练样本,以确保增强姿势的合理性。此外,我们提出姿势聚类模块(PCM)来测量姿势稀有性并选择“最稀有”姿势,以帮助平衡长尾分布。在三个基准数据集上进行的广泛实验证明了我们方法的有效性,尤其是在稀有姿势上。同样,我们的方法是有效且易于实施的,可以轻松地集成到现有姿势估计模型的训练管道中。
translated by 谷歌翻译