ALPA通过生成统一数据,操作员和管道并行性的执行计划来自动对大型深度学习(DL)模型的模型平行训练。现有的模型并行训练系统要求用户手动创建并行化计划,或者自动从有限的模型并行性配置中生成一个计划。它们不足以在分布式计算设备上扩展复杂的DL模型。 ALPA通过将并行性视为两个层次级别来分配大型DL模型的训练:操作员和操作员并行性。基于它,ALPA构建了一个新的分层空间,用于大规模的模型并行执行计划。 ALPA设计了许多汇编,以在每个并行性级别自动得出有效的并行执行计划。 ALPA实现了有效的运行时,以在分布式计算设备上协调两级并行执行。我们的评估表明,ALPA生成的并行化计划,即使在其设计的型号上,也可以匹配或超过手动模型并联训练系统。与专业系统不同,ALPA还推广到具有异质体系结构和模型的模型,而没有手动设计的计划。 ALPA的源代码可在https://github.com/alpa-projects/alpa上公开获得
translated by 谷歌翻译
随着传感技术的进步,多元时间序列分类(MTSC)最近受到了相当大的关注。基于深度学习的MTSC技术主要依赖于卷积或经常性神经网络,主要涉及单时间序列的时间依赖性。结果,他们努力直接在多变量变量中表达成对依赖性。此外,基于图形神经网络(GNNS)的当前空间 - 时间建模(例如,图形分类)方法本质上是平的,并且不能以分层方式聚合集线器数据。为了解决这些限制,我们提出了一种基于新的图形汇集框架MTPOOL,以获得MTS的表现力全球表示。我们首先通过采用通过图形结构学习模块的相互作用来将MTS切片转换为曲线图,并通过时间卷积模块获得空间 - 时间图节点特征。为了获得全局图形级表示,我们设计了基于“编码器 - 解码器”的变形图池池模块,用于为群集分配创建自适应质心。然后我们将GNN和我们所提出的变分图层汇集层组合用于联合图表示学习和图形粗糙化,之后该图逐渐赋予一个节点。最后,可差异化的分类器将此粗糙的表示来获取最终预测的类。 10个基准数据集的实验表明MTPOOL优于MTSC任务中最先进的策略。
translated by 谷歌翻译
多变量时间序列预测,分析历史时序序列以预测未来趋势,可以有效地帮助决策。 MTS中变量之间的复杂关系,包括静态,动态,可预测和潜在的关系,使得可以挖掘MTS的更多功能。建模复杂关系不仅是表征潜在依赖性的必要条件以及建模时间依赖性,而且在MTS预测任务中也带来了极大的挑战。然而,现有方法主要关注模拟MTS变量之间的某些关系。在本文中,我们提出了一种新的端到端深度学习模型,通过异构图形神经网络(MTHETGNN)称为多变量时间序列预测。为了表征变量之间的复杂关系,在MTHETGNN中设计了一个关系嵌入模块,其中每个变量被视为图形节点,并且每种类型的边缘表示特定的静态或动态关系。同时,引入了时间嵌入模块的时间序列特征提取,其中涉及具有不同感知尺度的卷积神经网络(CNN)滤波器。最后,采用异质图形嵌入模块来处理由两个模块产生的复杂结构信息。来自现实世界的三个基准数据集用于评估所提出的MTHETGNN。综合实验表明,MTHETGNN在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
多变量时间序列(MTS)预测是许多领域的重要问题。准确的预测结果可以有效地帮助决策。迄今为止,已经提出了许多MTS预测方法并广泛应用。但是,这些方法假设单个变量的预测值受到所有其他变量的影响,这忽略了变量之间的因果关系。为了解决上述问题,我们提出了一种新的端到端深度学习模式,称为本文的神经格兰特因果关系图形神经网络(CAUGNN)。要在变量间的因果信息中表征,我们在模型中介绍了神经格子因果关系图。每个变量被视为图形节点,每个边缘表示变量之间的随意关系。另外,具有不同感知尺度的卷积神经网络(CNN)过滤器用于时间序列特征提取,其用于生成每个节点的特征。最后,采用图形神经网络(GNN)来解决MTS产生的图形结构的预测问题。来自现实世界的三个基准数据集用于评估提议的Caugnn。综合实验表明,该方法在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
Network pruning is a promising way to generate light but accurate models and enable their deployment on resource-limited edge devices. However, the current state-of-the-art assumes that the effective sub-network and the other superfluous parameters in the given network share the same distribution, where pruning inevitably involves a distribution truncation operation. They usually eliminate values near zero. While simple, it may not be the most appropriate method, as effective models may naturally have many small values associated with them. Removing near-zero values already embedded in model space may significantly reduce model accuracy. Another line of work has proposed to assign discrete prior over all possible sub-structures that still rely on human-crafted prior hypotheses. Worse still, existing methods use regularized point estimates, namely Hard Pruning, that can not provide error estimations and fail reliability justification for the pruned networks. In this paper, we propose a novel distribution-lossless pruning method, named DLLP, to theoretically find the pruned lottery within Bayesian treatment. Specifically, DLLP remodels the vanilla networks as discrete priors for the latent pruned model and the other redundancy. More importantly, DLLP uses Stein Variational Inference to approach the latent prior and effectively bypasses calculating KL divergence with unknown distribution. Extensive experiments based on small Cifar-10 and large-scaled ImageNet demonstrate that our method can obtain sparser networks with great generalization performance while providing quantified reliability for the pruned model.
translated by 谷歌翻译
我们设计一个3D场景图表示,触点图+(CG+),以进行有效的顺序任务计划。此触点基于图形的表示,带有类似谓词的属性,带有简洁的几何信息和有效的机器人风格交互作用摘要场景布局。可以通过随机优化方法的遗传算法生成触点图上自然指定的目标配置。然后,通过计算初始触点图和目标配置之间的图形编辑距离(GED)来初始化任务计划,该图形配置生成了与可能的机器人操作相对应的图表编辑操作。我们通过强加约束来调节图形编辑操作的时间可行性,确保有效的任务和运动对应关系来最终确定任务计划。在一系列的模拟和实验中,机器人成功完成了使用常规规划语言(如计划域定义语言(PDDL))很难指定的复杂顺序重新安排任务,证明了机器人在接触图上的高可行性和潜力。
translated by 谷歌翻译
本文重点介绍了用神经网络检测分配(OOD)样本的问题。在图像识别任务,训练过的分类往往给人高置信度的远离中分布(ID)数据输入图像,这大大限制了它在现实世界中的应用。为了减轻这个问题,我们提出了一个基于GaN的边界意识分类器(GBAC),用于生成仅包含大多数ID数据的关闭超空间。我们的方法基于传统的神经网分离特征空间作为几个不适合于ood检测的未闭合区域。与GBAC作为辅助模块,封闭的超空间分布以外的OOD数据将具有低得多的分数被分配,允许更有效的检测OOD同时维持分级性能。此外,我们提出了一种快速采样方法,用于产生躺在预先提及的闭合空间的边界上的硬度陈述。在几个数据集和神经网络架构上采取的实验承诺GBAC的有效性。
translated by 谷歌翻译
大多数现代深度学习的多视图3D重建技术都使用RNN或融合模块在独立编码之后将来自多个图像的信息组合在一起。这两个单独的步骤具有松散的连接,不允许在视图之间简化信息共享。我们提出了LegoFormer,这是一种基于体素的3D重建的变压器模型,该模型使用注意力层在所有计算阶段中共享视图之间的信息。此外,我们建议使用一系列低级分解因子来参数输出,而不是独立预测每个体素。该重新制定允许对象作为一组独立的常规结构进行预测,然后汇总以获得最终的重建。在Shapenet上进行的实验证明了我们模型在最新技术方面的竞争性能,同时由于自我发挥层而具有可解释性。我们还显示了对真实数据的有希望的概括结果。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译