We investigate response generation for multi-turn dialogue in generative-based chatbots. Existing generative models based on RNNs (Recurrent Neural Networks) usually employ the last hidden state to summarize the sequences, which makes models unable to capture the subtle variability observed in different dialogues and cannot distinguish the differences between dialogues that are similar in composition. In this paper, we propose a Pseudo-Variational Gated Recurrent Unit (PVGRU) component without posterior knowledge through introducing a recurrent summarizing variable into the GRU, which can aggregate the accumulated distribution variations of subsequences. PVGRU can perceive the subtle semantic variability through summarizing variables that are optimized by the devised distribution consistency and reconstruction objectives. In addition, we build a Pseudo-Variational Hierarchical Dialogue (PVHD) model based on PVGRU. Experimental results demonstrate that PVGRU can broadly improve the diversity and relevance of responses on two benchmark datasets.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
Sparsity of formal knowledge and roughness of non-ontological construction make sparsity problem particularly prominent in Open Knowledge Graphs (OpenKGs). Due to sparse links, learning effective representation for few-shot entities becomes difficult. We hypothesize that by introducing negative samples, a contrastive learning (CL) formulation could be beneficial in such scenarios. However, existing CL methods model KG triplets as binary objects of entities ignoring the relation-guided ternary propagation patterns and they are too generic, i.e., they ignore zero-shot, few-shot and synonymity problems that appear in OpenKGs. To address this, we propose TernaryCL, a CL framework based on ternary propagation patterns among head, relation and tail. TernaryCL designs Contrastive Entity and Contrastive Relation to mine ternary discriminative features with both negative entities and relations, introduces Contrastive Self to help zero- and few-shot entities learn discriminative features, Contrastive Synonym to model synonymous entities, and Contrastive Fusion to aggregate graph features from multiple paths. Extensive experiments on benchmarks demonstrate the superiority of TernaryCL over state-of-the-art models.
translated by 谷歌翻译
在零拍摄的情况下建立对话的生成系统仍然是一个巨大的挑战,因为对话生成中典型的零击方法很大程度上取决于大规模的预训练的语言生成模型,例如GPT-3和T5。由于缺乏相应的平行对话COLIDA,对无繁琐语言模型的零摄像对话生成的研究受到限制。在本文中,我们提出了一个简单但有效的多语言学习框架,用于零拍对对话(称为mulzdg),该框架可以有效地将知识从带有大规模培训样本的英语语料库转移到具有零样本的非英语语料库。此外,MulzDG可以被视为一种多语言数据增强方法,以提高资源丰富的语言的性能。首先,我们通过从单语英文数据集随机选择的翻译说法来构建多语言代码转换对话数据集。然后,我们使用MulzDG来培训基于代码转换数据集的统一的多语言对话模型。 mulzdg可以在不同语言之间进行隐性的语义一致性。关于DailyDialog和DSTC7数据集的实验表明,与有足够示例的培训相比,MulzDG不仅在零击中的情况下实现竞争性能,而且还可以大大提高源语言的性能。
translated by 谷歌翻译
在未来几年和几十年中,自动驾驶汽车(AV)将变得越来越普遍,为更安全,更方便的旅行提供了新的机会,并可能利用自动化和连接性的更智能的交通控制方法。跟随汽车是自动驾驶中的主要功能。近年来,基于强化学习的汽车已受到关注,目的是学习和达到与人类相当的绩效水平。但是,大多数现有的RL方法将汽车模拟为单方面问题,仅感知前方的车辆。然而,最近的文献,王和霍恩[16]表明,遵循的双边汽车考虑了前方的车辆,而后面的车辆表现出更好的系统稳定性。在本文中,我们假设可以使用RL学习这款双边汽车,同时学习其他目标,例如效率最大化,混蛋最小化和安全奖励,从而导致学识渊博的模型超过了人类驾驶。我们通过将双边信息集成到基于双边控制模型(BCM)的CAR遵循控制的状态和奖励功能的情况下,提出并引入了遵循控制遵循的汽车的深钢筋学习(DRL)框架。此外,我们使用分散的多代理增强学习框架来为每个代理生成相​​应的控制动作。我们的仿真结果表明,我们学到的政策比(a)汽车间的前进方向,(b)平均速度,(c)混蛋,(d)碰撞时间(TTC)和(e)的速度更好。字符串稳定性。
translated by 谷歌翻译
积极的愿景本质上是关注驱动的:代理商积极选择观点,以便快速实现视觉任务,同时改善所观察到的场景的内部表示。受到最近基于关注模型的成功基于单个RGB图像,我们建议使用注意力机制来解决基于多视图深度的主动对象识别,通过开发端到端的反复间3D注意力网络。该架构利用了经常性的神经网络(RNN)来存储和更新内部表示。我们的模型,使用3D形状数据集接受培训,能够迭代地参加定位识别它的感兴趣对象的最佳视图。为了实现3D视图选择,我们得出了一种3D空间变压器网络,可分行,以便利用BackProjagation培训,实现比最现有的基于关注的模型所采用的强化学习更快的收敛。实验表明,我们的方法仅具有深度输入,实现了最先进的下一系列性能,处于时间效率和识别准确性。
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Image Virtual try-on aims at replacing the cloth on a personal image with a garment image (in-shop clothes), which has attracted increasing attention from the multimedia and computer vision communities. Prior methods successfully preserve the character of clothing images, however, occlusion remains a pernicious effect for realistic virtual try-on. In this work, we first present a comprehensive analysis of the occlusions and categorize them into two aspects: i) Inherent-Occlusion: the ghost of the former cloth still exists in the try-on image; ii) Acquired-Occlusion: the target cloth warps to the unreasonable body part. Based on the in-depth analysis, we find that the occlusions can be simulated by a novel semantically-guided mixup module, which can generate semantic-specific occluded images that work together with the try-on images to facilitate training a de-occlusion try-on (DOC-VTON) framework. Specifically, DOC-VTON first conducts a sharpened semantic parsing on the try-on person. Aided by semantics guidance and pose prior, various complexities of texture are selectively blending with human parts in a copy-and-paste manner. Then, the Generative Module (GM) is utilized to take charge of synthesizing the final try-on image and learning to de-occlusion jointly. In comparison to the state-of-the-art methods, DOC-VTON achieves better perceptual quality by reducing occlusion effects.
translated by 谷歌翻译
Dynamic treatment regimes assign personalized treatments to patients sequentially over time based on their baseline information and time-varying covariates. In mobile health applications, these covariates are typically collected at different frequencies over a long time horizon. In this paper, we propose a deep spectral Q-learning algorithm, which integrates principal component analysis (PCA) with deep Q-learning to handle the mixed frequency data. In theory, we prove that the mean return under the estimated optimal policy converges to that under the optimal one and establish its rate of convergence. The usefulness of our proposal is further illustrated via simulations and an application to a diabetes dataset.
translated by 谷歌翻译