In time series forecasting, decomposition-based algorithms break aggregate data into meaningful components and are therefore appreciated for their particular advantages in interpretability. Recent algorithms often combine machine learning (hereafter ML) methodology with decomposition to improve prediction accuracy. However, incorporating ML is generally considered to sacrifice interpretability inevitably. In addition, existing hybrid algorithms usually rely on theoretical models with statistical assumptions and focus only on the accuracy of aggregate predictions, and thus suffer from accuracy problems, especially in component estimates. In response to the above issues, this research explores the possibility of improving accuracy without losing interpretability in time series forecasting. We first quantitatively define interpretability for data-driven forecasts and systematically review the existing forecasting algorithms from the perspective of interpretability. Accordingly, we propose the W-R algorithm, a hybrid algorithm that combines decomposition and ML from a novel perspective. Specifically, the W-R algorithm replaces the standard additive combination function with a weighted variant and uses ML to modify the estimates of all components simultaneously. We mathematically analyze the theoretical basis of the algorithm and validate its performance through extensive numerical experiments. In general, the W-R algorithm outperforms all decomposition-based and ML benchmarks. Based on P50_QL, the algorithm relatively improves by 8.76% in accuracy on the practical sales forecasts of JD.com and 77.99% on a public dataset of electricity loads. This research offers an innovative perspective to combine the statistical and ML algorithms, and JD.com has implemented the W-R algorithm to make accurate sales predictions and guide its marketing activities.
translated by 谷歌翻译
时空视频接地(STVG)的重点是检索由自由形式的文本表达式描绘的特定物体的时空管。现有方法主要将这一复杂的任务视为平行框架的问题,因此遭受了两种类型的不一致缺点:特征对齐不一致和预测不一致。在本文中,我们提出了一个端到端的一阶段框架,称为时空的一致性变压器(STCAT),以减轻这些问题。特别是,我们引入了一个新颖的多模式模板,作为解决此任务的全球目标,该目标明确限制了接地区域并将所有视频框架之间的预测联系起来。此外,为了在足够的视频文本感知下生成上述模板,提出了一个编码器架构来进行有效的全局上下文建模。由于这些关键设计,STCAT享有更一致的跨模式特征对齐和管预测,而无需依赖任何预训练的对象探测器。广泛的实验表明,我们的方法在两个具有挑战性的视频基准(VIDSTG和HC-STVG)上胜过先前的最先进的,这说明了拟议框架的优越性,以更好地理解视觉与自然语言之间的关联。代码可在\ url {https://github.com/jy0205/stcat}上公开获得。
translated by 谷歌翻译
大型策划数据集是必要的,但是注释医学图像是一个耗时,费力且昂贵的过程。因此,最近的监督方法着重于利用大量未标记的数据。但是,这样做是一项具有挑战性的任务。为了解决这个问题,我们提出了一种新的3D Cross伪监督(3D-CPS)方法,这是一种基于NNU-NET的半监督网络体系结构,采用交叉伪监督方法。我们设计了一种新的基于NNU-NET的预处理方法,并在推理阶段采用强制间距设置策略来加快推理时间。此外,我们将半监督的损耗重量设置为与每个时期的线性扩展,以防止在早期训练过程中模型从低质量的伪标签中。我们提出的方法在MICCAI Flare2022验证集(20例)上,平均骰子相似系数(DSC)为0.881,平均归一化表面距离(NSD)为0.913。
translated by 谷歌翻译
设计私人投票规则是值得信赖的民主的重要问题。在本文中,根据差异隐私的框架,我们根据知名的Condorcet方法提出了三类随机投票规则:Laplacian Condorcet方法($ cm^{lap} _ \ lambda $),指数condorcet方法($ cmcmential condorcet方法^{exp} _ \ lambda $)和随机响应condorcet方法($ cm^{rr} _ \ lambda $),其中$ \ lambda $代表噪声级别。通过准确估计随机性引入的错误,我们表明$ cm^{exp} _ \ lambda $是大多数情况下最准确的机制。我们证明,我们的所有规则都满足绝对单调性,Lexi参与,概率帕累托效率,近似概率孔孔标准和近似SD-StrategyProofness。此外,$ cm^{rr} _ \ lambda $满足(非适当的)概率condorcet标准,而$ cm^{lap} _ \ lambda $和$ cm^{exp} _ \ \ lambda _ 。最后,我们将差异隐私视为投票公理,并讨论其与其他公理的关系。
translated by 谷歌翻译
位置识别在机器人和车辆的重新定位和循环封闭检测任务中起着至关重要的作用。本文为基于激光雷达的位置识别寻求明确定义的全球描述符。与本地描述符相比,全球描述符在城市道路场景中表现出色,但通常依赖于观点。为此,我们提出了一个简单而坚固的全局描述符,称为壁画,通过利用傅立叶变换和圆形转移技术,可以分解重新访问期间的视点差异,并实现翻译和旋转不变性。此外,还提出了一种快速的两阶段姿势估计方法,以利用从场景中提取的紧凑型2D点云来估计位置回收后的相对姿势。实验表明,在来自多个数据集的不同场景的序列上,壁画表现出比同期方法表现出更好的性能。该代码将在https://github.com/soytony/fresco上公开获取。
translated by 谷歌翻译
利用6DOF(自由度)对象的姿势信息及其组件对于对象状态检测任务至关重要。我们展示了IKEA对象状态数据集,该数据集包含宜家家具3D模型,装配过程的RGBD视频,家具部件的6dof姿势及其边界盒。建议的数据集将在https://github.com/mxllmx/ikeaObjectstateTateDataSet上使用。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
The surrogate loss of variational autoencoders (VAEs) poses various challenges to their training, inducing the imbalance between task fitting and representation inference. To avert this, the existing strategies for VAEs focus on adjusting the tradeoff by introducing hyperparameters, deriving a tighter bound under some mild assumptions, or decomposing the loss components per certain neural settings. VAEs still suffer from uncertain tradeoff learning.We propose a novel evolutionary variational autoencoder (eVAE) building on the variational information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE integrates a variational genetic algorithm into VAE with variational evolutionary operators including variational mutation, crossover, and evolution. Its inner-outer-joint training mechanism synergistically and dynamically generates and updates the uncertain tradeoff learning in the evidence lower bound (ELBO) without additional constraints. Apart from learning a lossy compression and representation of data under the VIB assumption, eVAE presents an evolutionary paradigm to tune critical factors of VAEs and deep neural networks and addresses the premature convergence and random search problem by integrating evolutionary optimization into deep learning. Experiments show that eVAE addresses the KL-vanishing problem for text generation with low reconstruction loss, generates all disentangled factors with sharp images, and improves the image generation quality,respectively. eVAE achieves better reconstruction loss, disentanglement, and generation-inference balance than its competitors.
translated by 谷歌翻译