虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
无监督域适配利用标记的源域中丰富的信息来模拟未标记的目标域。现有方法尝试对齐跨域分布。然而,两个域的对准的统计表示并不良好解决。在本文中,我们提出了深度最小二乘对准(DLSA)来估计通过参数化线性模型来估计潜在空间中的两个域的分布。我们通过最小化拟合线和截距差异之间的角度以及进一步学习域不变特征,进一步开发边缘和条件适应损失以减少域差异。广泛的实验表明,所提出的DLSA模型在对准域分布和优于最先进的方法方面有效。
translated by 谷歌翻译
图形神经网络(GNN)代表了在图形结构上运行的深度学习模型的新兴线路。由于其在许多与图形相关任务中实现的高精度,它变得越来越受欢迎。然而,在系统和建筑社区中,GNN在系统和建筑社区中不太了解,作为其对应物,例如多层的感知和卷积神经网络。这项工作试图向我们的社区介绍GNN。与仅呈现GCNS的特征的事先工作相比,我们的工作基于一般GNN描述框架覆盖GNN工作负载的大部分品种。通过构建两个广泛使用的库之上的模型,我们在有关通用和特定于应用程序的架构的推理阶段的特征在于GNN计算,希望我们的工作能够促进更多的系统和建筑研究GNN。
translated by 谷歌翻译
专家混合物(MOE)由于其成功提高了模型质量,特别是在变压器方面的成功而变得流行。通过向几个专家提供稀疏门的令牌,每个专家只包含完整模型的一部分,Moe将模型尺寸保持不变,并且显着降低了每次标记计算,从而有效地缩放神经网络。但是,我们发现,目前的联合训练专家和稀疏门的方法引入了对模型精度的负面影响,缩短了昂贵的大规模模型训练的效率。在这项工作中,我们提出了用于MOE训练的密集至稀疏的门(DTS-Gate)。具体而言,代替使用永久稀疏门,DTS-Gate开始作为向所有专家路由令牌的密集栅极开始,然后逐渐和自适应地成为稀疏,而路线较少到更少的专家。与DTS-Gate的Moe自然地通过培训所有专家训练专家和稀疏门的训练,然后学习稀疏门。实验表明,与GPT-MOE(1.5B)模型中的最先进的开关门相比,使用OpenWeBtext数据集(40GB),DTS-Gate可以获得2.0倍的加速以达到相同的验证困惑,如以及更高的拖鞋 - 效率为1.42倍的加速。
translated by 谷歌翻译
近来增加大型机器学习模型的趋势需要分发培训和推理任务。考虑到培训这些模型的巨大成本,必须在计算和沟通中解锁优化以获得最佳性能。然而,深入学习框架中的计算和通信内核之间的当前逻辑分离遍及此类障碍的优化机会。通过整体考虑破坏此抽象可以提供许多优化,以提供分布式工作负载中的性能改进。手动应用这些优化需要在每个场景中的底层计算和通信库中的修改,这是耗时和容易出错的。因此,我们呈现Coconet,用DSL表达具有计算和通信的程序。 Coconet包含几种机器学习感知转换,以优化程序和编译器以生成高性能内核。作为第一类构造的计算和通信允许用户在高级抽象上工作,并应用强大的优化,例如融合或传播和计算重叠。 Coconet使我们能够以几行代码在大型语言模型中优化数据,模型和管道平行工作负载。实验显示椰子显着优于最先进的分布式机器学习实现。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译