We solve a fundamental challenge in semiconductor IC design: the fast and accurate characterization of nanoscale photonic devices. Much like the fusion between AI and EDA, many efforts have been made to apply DNNs such as convolutional neural networks (CNN) to prototype and characterize next-gen optoelectronic devices commonly found in photonic integrated circuits (PIC) and LiDAR. These prior works generally strive to predict the quality factor (Q) and modal volume (V) of for instance, photonic crystals, with ultra-high accuracy and speed. However, state-of-the-art models are still far from being directly applicable in the real-world: e.g. the correlation coefficient of V ($V_{coeff}$ ) is only about 80%, which is much lower than what it takes to generate reliable and reproducible nanophotonic designs. Recently, attention-based transformer models have attracted extensive interests and been widely used in CV and NLP. In this work, we propose the first-ever Transformer model (POViT) to efficiently design and simulate semiconductor photonic devices with multiple objectives. Unlike the standard Vision Transformer (ViT), we supplied photonic crystals as data input and changed the activation layer from GELU to an absolute-value function (ABS). Our experiments show that POViT exceeds results reported by previous models significantly. The correlation coefficient $V_{coeff}$ increases by over 12% (i.e., to 92.0%) and the prediction errors of Q is reduced by an order of magnitude, among several other key metric improvements. Our work has the potential to drive the expansion of EDA to fully automated photonic design. The complete dataset and code will be released to aid researchers endeavoring in the interdisciplinary field of physics and computer science.
translated by 谷歌翻译
我们提出了一种深层签名/对数符号FBSDE算法,以求解具有状态和路径依赖性特征的前回向随机微分方程(FBSDE)。通过将深度签名/对数签名转换纳入复发性神经网络(RNN)模型,我们的算法缩短了训练时间,提高了准确性,并扩展了与现有文献中方法相比的时间范围。此外,我们的算法可以应用于涉及高频数据,模型歧义和随机游戏等广泛的应用程序和路径依赖的选项定价,这些定价与抛物线偏差方程(PDES)以及路径依赖性依赖性链接有关PDE(PPDE)。最后,我们还得出了深度签名/对数签名FBSDE算法的收敛分析。
translated by 谷歌翻译
Deepfakes的恶意应用(即,从面部图像产生目标面部属性或整个面部的技术)对个人的声誉和安全构成了巨大的威胁。为了减轻这些威胁,最近的研究已经提出了对抗DeepFake模型的对抗水印,导致它们产生扭曲的输出。尽管结果令人印象深刻,但这些对抗水印具有低的图像水平和模型级可转移性,这意味着它们可以仅保护一个特定的DeepFake模型的一个面部图像。为了解决这些问题,我们提出了一种新的解决方案,可以产生跨模型通用对抗水印(CMUA-Watermark),保护来自多个DeepFake模型的大量面部图像。具体而言,我们首先提出跨模型通用攻击管道,迭代地攻击多个DeepFake模型。然后,我们设计了一种双层扰动融合策略,以减轻不同面部图像和模型产生的对抗水印之间的冲突。此外,我们通过启发式方法解决了跨模型优化的关键问题,以自动找到不同型号的合适的攻击步骤尺寸,进一步削弱了模型级冲突。最后,我们介绍了一种更合理和全面的评估方法来完全测试所提出的方法并将其与现有的方法进行比较。广泛的实验结果表明,所提出的CMUA-Watermark可以有效地扭曲由多个DeepFake模型产生的假面部图像,同时实现比现有方法更好的性能。
translated by 谷歌翻译
We present the Neural Satisfiability Network (NSNet), a general neural framework that models satisfiability problems as probabilistic inference and meanwhile exhibits proper explainability. Inspired by the Belief Propagation (BP), NSNet uses a novel graph neural network (GNN) to parameterize BP in the latent space, where its hidden representations maintain the same probabilistic interpretation as BP. NSNet can be flexibly configured to solve both SAT and #SAT problems by applying different learning objectives. For SAT, instead of directly predicting a satisfying assignment, NSNet performs marginal inference among all satisfying solutions, which we empirically find is more feasible for neural networks to learn. With the estimated marginals, a satisfying assignment can be efficiently generated by rounding and executing a stochastic local search. For #SAT, NSNet performs approximate model counting by learning the Bethe approximation of the partition function. Our evaluations show that NSNet achieves competitive results in terms of inference accuracy and time efficiency on multiple SAT and #SAT datasets.
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译