道路网络的图结构对于自动驾驶系统的下游任务,例如全球计划,运动预测和控制至关重要。过去,公路网络图通常由人类专家手动注释,这是耗时且劳动力密集的。为了获得更好的有效性和效率的道路网络图,需要进行自动的路网图检测方法。先前的作品要么是后处理的语义分割图,要么提出基于图的算法以直接预测道路网络图。但是,以前的作品遭受了硬编码的启发式处理算法和劣质最终性能。为了增强先前的SOTA(最新方法)方法RNGDET,我们添加了一个实例分割头,以更好地监督模型培训,并使模型能够利用骨干网络的多尺度功能。由于新提出的方法从RNGDET改进,因此命名为RNGDET ++。所有方法均在大型公开数据集上进行评估。 RNGDET ++在几乎所有度量分数上都优于基线模型。它将拓扑正确性APL(平均路径长度相似性)提高了3 \%。演示视频和补充材料可在我们的项目页面\ url {https://tonyxuqaq.github.io/projects/rngdetplusplus/}中获得。
translated by 谷歌翻译
标记级别的高清地图(HD地图)对自动驾驶汽车具有重要意义,尤其是在大规模,外观改变的情况下,自动驾驶汽车依靠标记来定位和车道来安全驾驶。在本文中,我们提出了一个高度可行的框架,用于使用简单的传感器设置(一个或多个单眼摄像机)自动构建标记级别的高清图。我们优化标记角的位置,以适合标记分割的结果,并同时优化相应摄像机的反视角映射(IPM)矩阵,以获得从前视图图像到鸟类视图(BEV)的准确转换。在定量评估中,构建的高清图几乎达到了百厘厘米级的准确性。优化的IPM矩阵的准确性与手动校准相似。该方法还可以概括以通过增加可识别标记的类型来从更广泛的意义上构建高清图。
translated by 谷歌翻译
随着自动驾驶汽车的快速发展,目击者对高清地图(HD地图)的需求蓬勃发展,这些地图(HD地图)在自主驾驶场景中提供了可靠且强大的静态环境信息。作为高清图中的主要高级元素之一,道路车道中心线对于下游任务(例如预测和计划)至关重要。人类注释器手动注释车道中心线高清图是劳动密集型,昂贵且效率低下的,严重限制了自动驾驶系统的广泛应用和快速部署。以前的工作很少探索中心线高清图映射问题,这是由于拓扑复杂和道路中心线的严重重叠问题。在本文中,我们提出了一种名为CenterLinedet的新方法,以自动创建Lane Centrine HD地图。通过模仿学习对CenterLinedet进行训练,并可以通过使用车辆安装的传感器进行迭代有效地检测到车道中心线的图。由于应用了类似DITR的变压器网络,CenterLinedet可以处理复杂的图形拓扑,例如车道相交。在大型公开数据集Nuscenes上评估了所提出的方法,并通过比较结果很好地证明了CenterLinedet的优势。本文附有一个演示视频和一个补充文档,可在\ url {https://tonyxuqaq.github.io/projects/centerlinedet/}中获得。
translated by 谷歌翻译
与单个机器人相比,多个移动操纵器在需要移动性和灵活性的任务中表现出优势,尤其是在操纵/运输笨重的物体时。当对象和操纵器紧密地连接时,将形成闭合链,整个系统的运动将被限制在较低的歧管上。但是,当前对多机器人运动计划的研究并未完全考虑整个系统的形成,移动操纵器的冗余以及环境中的障碍,这使得任务具有挑战性。因此,本文提出了一个层次结构框架,以有效地解决上述挑战,其中集中式层计划离线运动的运动和分散层独立地实时探索每个机器人的冗余。此外,在集中式层中保证了封闭链,避免障碍物和地层限制的下限,其他计划者无法同时实现。此外,代表编队约束的分布的能力图可用于加快两层。仿真和实验结果都表明,所提出的框架的表现明显优于基准规划师。该系统可以在混乱的环境中绕过或跨越障碍物,并且该框架可以应用于不同数量的异质移动操纵器。
translated by 谷歌翻译
本文介绍了一个新型的预训练的空间时间多对一(p-STMO)模型,用于2D到3D人类姿势估计任务。为了减少捕获空间和时间信息的困难,我们将此任务分为两个阶段:预训练(I期)和微调(II阶段)。在第一阶段,提出了一个自我监督的预训练子任务,称为蒙面姿势建模。输入序列中的人关节在空间和时间域中随机掩盖。利用denoising自动编码器的一般形式以恢复原始的2D姿势,并且编码器能够以这种方式捕获空间和时间依赖性。在第二阶段,将预训练的编码器加载到STMO模型并进行微调。编码器之后是一个多对一的框架聚合器,以预测当前帧中的3D姿势。尤其是,MLP块被用作STMO中的空间特征提取器,其性能比其他方法更好。此外,提出了一种时间下采样策略,以减少数据冗余。在两个基准上进行的广泛实验表明,我们的方法优于较少参数和较少计算开销的最先进方法。例如,我们的P-STMO模型在使用CPN作为输入的2D姿势时,在Human3.6M数据集上达到42.1mm MPJPE。同时,它为最新方法带来了1.5-7.1倍的速度。代码可在https://github.com/patrick-swk/p-stmo上找到。
translated by 谷歌翻译
道路网络图为自动驾驶应用程序提供关键信息,例如可用于运动计划算法的可驱动区域。为了找到道路网络图,手动注释通常效率低下且劳动密集型。自动检测道路网络图可以减轻此问题,但现有作品仍然存在一些局限性。例如,基于细分的方法无法确保令人满意的拓扑正确性,并且基于图的方法无法提供足够精确的检测结果。为了解决这些问题的解决方案,我们在本文中提出了一种基于变压器和模仿学习的新方法。鉴于当今世界各地可以轻松访问高分辨率航空图像,我们在方法中使用航空图像。作为输入的空中图像,我们的方法迭代生成道路网络图逐vertex。我们的方法可以处理复杂的交叉点,以及各种事件的道路细分。我们在公开可用的数据集上评估我们的方法。通过比较实验证明了我们方法的优势。我们的作品附有一个演示视频,可在\ url {https://tonyxuqaq.github.io/projects/rngdet/}中获得。
translated by 谷歌翻译
少量样本压缩旨在将大冗余模型压缩成一个小型紧凑型,只有少量样品。如果我们的微调模型直接具有这些限制的样本,模型将容易受到过度装备,并且几乎没有学习。因此,先前的方法优化压缩模型逐层,并尝试使每个层具有与教师模型中的相应层相同的输出,这是麻烦的。在本文中,我们提出了一个名为mimicking的新框架,然后替换(mir),以实现几个样本压缩,这首先促使修剪模型输出与教师在倒数第二层中的相同功能,然后在倒数第二个之前替换教师的图层调整良好的紧凑型。与以前的层面重建方法不同,我们的MIR完全优化整个网络,这不仅简单而有效,而且还无人驾驶和一般。MIR优于以前的余量。代码即将推出。
translated by 谷歌翻译
在本研究中,提出了一种新的,一般和巧妙的激活函数,被称为MDAC,以超越梯度消失和不可分化的存在的麻烦。 MDAC大致继承指数激活函数(如Tanh系列)的属性和分段线性激活函数(例如Relu系列)。具体地,在正区域中,自适应线性结构被设计为响应各种域分布。在负面地区,指数和线性度的组合被认为是征服梯度消失的障碍。此外,通过光滑的近似消除了不可分化的存在。实验表明,MDAC通过简单地改变激活功能,MDAC在六个域数据集中提高了六个域数据集的性能,这表明MDAC的有效性和高尚的革命性。 MDAC优于鲁棒性和泛化的其他普遍激活功能,并且可以在多个域中反映出色的激活性能。
translated by 谷歌翻译
多机器人运输(MRT)是通过多个机器人的合作将对象运送到目的地。在物体运输过程中,避免障碍是一个不可或缺的特征。在传统的当地规划师中,障碍通常被认为是不可克服的,所以机器人团队绕过整个障碍。然而,许多障碍可以在真实情况下越过。研究机器人团队的障碍交叉能力可以提高MRT的效率,并提高复杂环境中的规划成功率。通过患者转移通过床单的灵感,本文侧重于多移动机器人的物体运输,具有可变形的纸张。提出了一种具有障碍交叉能力的新的本地计划者,其中包括三个部分:可变形的纸张建模,形成优化和局部路径。它可以成功找到在其他规划者失败的复杂情景中的障碍交叉路径。策划者的有效性和多功能性通过实验中的三个移动机器人进行了案例研究,以及具有四个机器人的模拟。
translated by 谷歌翻译
高清(HD)地图可以为自动驾驶提供静态交通环境的精确几何和语义信息。道路边界是高清地图中包含的最重要的信息之一,因为它区分道路地区和越野地区,可以引导车辆在道路区域内驾驶。但它是劳动密集型的,以向城市规模提供高清地图的道路边界。为了启用自动高清映射注释,当前工作使用语义分割或迭代图,用于道路边界检测。然而,前者无法确保拓扑正确性,因为它在像素级别工作,而后者遭受效率低下和漂流问题。为了提供上述问题的解决方案,在这封信中,我们提出了一个新的系统被称为CSBoundary,以便在城市规模上自动检测高清地图注释的道路边界。我们的网络将作为输入空中图像补丁的输入,并直接从此图像中递送连续的道路边界图(即顶点和边缘)。要生成城市规模的道路边界图,我们将从所有图像修补程序缝制所获得的图形。我们的CSBoundary在公共基准数据集中进行了评估并进行了比较。结果表明了我们的优越感。伴随的演示视频可在我们的项目页面\ url {https:/sites.google.com/view/csbound/}处获得。
translated by 谷歌翻译