高清(HD)地图可以为自动驾驶提供静态交通环境的精确几何和语义信息。道路边界是高清地图中包含的最重要的信息之一,因为它区分道路地区和越野地区,可以引导车辆在道路区域内驾驶。但它是劳动密集型的,以向城市规模提供高清地图的道路边界。为了启用自动高清映射注释,当前工作使用语义分割或迭代图,用于道路边界检测。然而,前者无法确保拓扑正确性,因为它在像素级别工作,而后者遭受效率低下和漂流问题。为了提供上述问题的解决方案,在这封信中,我们提出了一个新的系统被称为CSBoundary,以便在城市规模上自动检测高清地图注释的道路边界。我们的网络将作为输入空中图像补丁的输入,并直接从此图像中递送连续的道路边界图(即顶点和边缘)。要生成城市规模的道路边界图,我们将从所有图像修补程序缝制所获得的图形。我们的CSBoundary在公共基准数据集中进行了评估并进行了比较。结果表明了我们的优越感。伴随的演示视频可在我们的项目页面\ url {https:/sites.google.com/view/csbound/}处获得。
translated by 谷歌翻译
道路网络图为自动驾驶应用程序提供关键信息,例如可用于运动计划算法的可驱动区域。为了找到道路网络图,手动注释通常效率低下且劳动密集型。自动检测道路网络图可以减轻此问题,但现有作品仍然存在一些局限性。例如,基于细分的方法无法确保令人满意的拓扑正确性,并且基于图的方法无法提供足够精确的检测结果。为了解决这些问题的解决方案,我们在本文中提出了一种基于变压器和模仿学习的新方法。鉴于当今世界各地可以轻松访问高分辨率航空图像,我们在方法中使用航空图像。作为输入的空中图像,我们的方法迭代生成道路网络图逐vertex。我们的方法可以处理复杂的交叉点,以及各种事件的道路细分。我们在公开可用的数据集上评估我们的方法。通过比较实验证明了我们方法的优势。我们的作品附有一个演示视频,可在\ url {https://tonyxuqaq.github.io/projects/rngdet/}中获得。
translated by 谷歌翻译
道路网络的图结构对于自动驾驶系统的下游任务,例如全球计划,运动预测和控制至关重要。过去,公路网络图通常由人类专家手动注释,这是耗时且劳动力密集的。为了获得更好的有效性和效率的道路网络图,需要进行自动的路网图检测方法。先前的作品要么是后处理的语义分割图,要么提出基于图的算法以直接预测道路网络图。但是,以前的作品遭受了硬编码的启发式处理算法和劣质最终性能。为了增强先前的SOTA(最新方法)方法RNGDET,我们添加了一个实例分割头,以更好地监督模型培训,并使模型能够利用骨干网络的多尺度功能。由于新提出的方法从RNGDET改进,因此命名为RNGDET ++。所有方法均在大型公开数据集上进行评估。 RNGDET ++在几乎所有度量分数上都优于基线模型。它将拓扑正确性APL(平均路径长度相似性)提高了3 \%。演示视频和补充材料可在我们的项目页面\ url {https://tonyxuqaq.github.io/projects/rngdetplusplus/}中获得。
translated by 谷歌翻译
随着自动驾驶汽车的快速发展,目击者对高清地图(HD地图)的需求蓬勃发展,这些地图(HD地图)在自主驾驶场景中提供了可靠且强大的静态环境信息。作为高清图中的主要高级元素之一,道路车道中心线对于下游任务(例如预测和计划)至关重要。人类注释器手动注释车道中心线高清图是劳动密集型,昂贵且效率低下的,严重限制了自动驾驶系统的广泛应用和快速部署。以前的工作很少探索中心线高清图映射问题,这是由于拓扑复杂和道路中心线的严重重叠问题。在本文中,我们提出了一种名为CenterLinedet的新方法,以自动创建Lane Centrine HD地图。通过模仿学习对CenterLinedet进行训练,并可以通过使用车辆安装的传感器进行迭代有效地检测到车道中心线的图。由于应用了类似DITR的变压器网络,CenterLinedet可以处理复杂的图形拓扑,例如车道相交。在大型公开数据集Nuscenes上评估了所提出的方法,并通过比较结果很好地证明了CenterLinedet的优势。本文附有一个演示视频和一个补充文档,可在\ url {https://tonyxuqaq.github.io/projects/centerlinedet/}中获得。
translated by 谷歌翻译
在过去几年中,自动驾驶一直是最受欢迎,最具挑战性的主题之一。在实现完全自治的道路上,研究人员使用了各种传感器,例如LIDAR,相机,惯性测量单元(IMU)和GPS,并开发了用于自动驾驶应用程序的智能算法,例如对象检测,对象段,障碍,避免障碍物,避免障碍物和障碍物,以及路径计划。近年来,高清(HD)地图引起了很多关注。由于本地化中高清图的精度和信息水平很高,因此它立即成为自动驾驶的关键组成部分之一。从Baidu Apollo,Nvidia和TomTom等大型组织到个别研究人员,研究人员创建了用于自主驾驶的不同场景和用途的高清地图。有必要查看高清图生成的最新方法。本文回顾了最新的高清图生成技术,这些技术利用了2D和3D地图生成。这篇评论介绍了高清图的概念及其在自主驾驶中的有用性,并详细概述了高清地图生成技术。我们还将讨论当前高清图生成技术的局限性,以激发未来的研究。
translated by 谷歌翻译
自动驾驶系统需要对周围环境有很好的了解,包括移动障碍物和静态高清(HD)语义图。现有方法通过离线手动注释来解决语义图问题,该注释遭受了严重的可伸缩性问题。最新的基于学习的方法产生了密集的栅格分割预测,这些预测不包含单个地图元素的实例信息,并且需要涉及许多手工设计的组件的启发式后处理,以获得矢量化的地图。为此,我们引入了一个端到端矢量化的高清图学习管道,称为ve​​ctormapnet。 Vectormapnet进行了板载传感器的观测值,并预测了鸟类视图中的一组稀疏的散布原料,以建模HD地图的几何形状。基于此管道,我们的方法可以明确地对地图元素之间的空间关系进行建模,并生成对矢量化的地图,这些矢量图对于下游自主驾驶任务友好而无需进行后处理。在我们的实验中,VectorMapnet在Nuscenes数据集上实现了强大的HD MAP学习性能,从而超过了先前的最新方法,可以通过14.2地图。从定性上讲,我们还表明Vectormapnet能够生成综合地图并捕获更多的道路几何细节。据我们所知,VectorMapnet是针对端到端矢量化的HD MAP学习问题设计的第一部作品。
translated by 谷歌翻译
大规模矢量映射对于运输,城市规划,调查和人口普查很重要。我们提出了GraphMapper,这是从卫星图像中提取端到端向量图的统一框架。我们的关键思想是一种新颖的统一表示,称为“原始图”的不同拓扑的形状,这是一组形状原语及其成对关系矩阵。然后,我们将向量形状的预测,正则化和拓扑重构转换为独特的原始图学习问题。具体而言,GraphMapper是一个基于多头注意的全局形状上下文建模的通用原始图形学习网络。开发了一种嵌入式空间排序方法,用于准确的原始关系建模。我们从经验上证明了GraphMapper对两个具有挑战性的映射任务的有效性,即建立足迹正则化和道路网络拓扑重建。我们的模型在公共基准上的两项任务中都优于最先进的方法。所有代码将公开可用。
translated by 谷歌翻译
尽管近期基于深度学习的语义细分,但远程感测图像的自动建筑检测仍然是一个具有挑战性的问题,由于全球建筑物的出现巨大变化。误差主要发生在构建足迹的边界,阴影区域,以及检测外表面具有与周围区域非常相似的反射率特性的建筑物。为了克服这些问题,我们提出了一种生成的对抗基于网络的基于网络的分割框架,其具有嵌入在发电机中的不确定性关注单元和改进模块。由边缘和反向关注单元组成的细化模块,旨在精炼预测的建筑地图。边缘注意力增强了边界特征,以估计更高的精度,并且反向关注允许网络探索先前估计区域中缺少的功能。不确定性关注单元有助于网络解决分类中的不确定性。作为我们方法的权力的衡量标准,截至2021年12月4日,它在Deepglobe公共领导板上的第二名,尽管我们的方法的主要重点 - 建筑边缘 - 并不完全对齐用于排行榜排名的指标。 DeepGlobe充满挑战数据集的整体F1分数为0.745。我们还报告了对挑战的Inria验证数据集的最佳成绩,我们的网络实现了81.28%的总体验证,总体准确性为97.03%。沿着同一条线,对于官方Inria测试数据集,我们的网络总体上得分77.86%和96.41%,而且准确性。
translated by 谷歌翻译
Deep learning based methods have significantly boosted the study of automatic building extraction from remote sensing images. However, delineating vectorized and regular building contours like a human does remains very challenging, due to the difficulty of the methodology, the diversity of building structures, and the imperfect imaging conditions. In this paper, we propose the first end-to-end learnable building contour extraction framework, named BuildMapper, which can directly and efficiently delineate building polygons just as a human does. BuildMapper consists of two main components: 1) a contour initialization module that generates initial building contours; and 2) a contour evolution module that performs both contour vertex deformation and reduction, which removes the need for complex empirical post-processing used in existing methods. In both components, we provide new ideas, including a learnable contour initialization method to replace the empirical methods, dynamic predicted and ground truth vertex pairing for the static vertex correspondence problem, and a lightweight encoder for vertex information extraction and aggregation, which benefit a general contour-based method; and a well-designed vertex classification head for building corner vertices detection, which casts light on direct structured building contour extraction. We also built a suitable large-scale building dataset, the WHU-Mix (vector) building dataset, to benefit the study of contour-based building extraction methods. The extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU dataset, and the CrowdAI dataset verified that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods.
translated by 谷歌翻译
本文通过解决面具可逆性问题来研究建筑物多边形映射的问题,该问题导致了基于学习的方法的预测蒙版和多边形之间的显着性能差距。我们通过利用分层监督(底部级顶点,中层线段和高级区域口罩)来解决此问题,并提出了一种新颖用于建筑物多边形映射的面具。结果,我们表明,学识渊博的可逆建筑面具占据了深度卷积神经网络的所有优点,用于建筑物的高绩效多边形映射。在实验中,我们评估了对Aicrowd和Inria的两个公共基准的方法。在Aicrowd数据集上,我们提出的方法对AP,APBOUNDARY和POLIS的指标获得了一致改进。对于Inria数据集,我们提出的方法还获得了IOU和准确性指标的竞争结果。型号和源代码可在https://github.com/sarahwxu上获得。
translated by 谷歌翻译
捕获图像的全局拓扑对于提出对其域的准确分割至关重要。但是,大多数现有的分割方法都不能保留给定输入的初始拓扑,这对许多下游基于对象的任务有害。对于大多数在本地尺度上工作的深度学习模型来说,这是更真实的。在本文中,我们提出了一种新的拓扑深度图像分割方法,该方法依赖于新的泄漏损失:Pathloss。我们的方法是Baloss [1]的扩展,其中我们希望改进泄漏检测,以更好地恢复图像分割的接近度。这种损失使我们能够正确定位并修复预测中可能发生的关键点(边界中的泄漏),并基于最短路径搜索算法。这样,损失最小化仅在必要时才能强制连接,并最终提供了图像中对象边界的良好定位。此外,根据我们的研究,与无需使用拓扑损失的方法相比,我们的Pathloss学会了保持更强的细长结构。通过我们的拓扑损失函数培训,我们的方法在两个代表性数据集上优于最先进的拓扑感知方法:电子显微镜和历史图。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
我们为来自多视图立体声(MVS)城市场景的3D建筑物的实例分割了一部小说框架。与关注城市场景的语义分割的现有作品不同,即使它们安装在大型和不精确的3D表面模型中,这项工作的重点是检测和分割3D构建实例。通过添加高度图,首先将多视图RGB图像增强到RGBH图像,并且被分段以使用微调的2D实例分割神经网络获得所有屋顶实例。然后将来自不同的多视图图像的屋顶实例掩码被聚集到全局掩码中。我们的面具聚类占空间闭塞和重叠,可以消除多视图图像之间的分割歧义。基于这些全局掩码,3D屋顶实例由掩码背部投影分割,并通过Markov随机字段(MRF)优化扩展到整个建筑实例。定量评估和消融研究表明了该方法的所有主要步骤的有效性。提供了一种用于评估3D建筑模型的实例分割的数据集。据我们所知,它是一个在实例分割级别的3D城市建筑的第一个数据集。
translated by 谷歌翻译
随着自动驾驶行业正在缓慢成熟,视觉地图本地化正在迅速成为尽可能准确定位汽车的标准方法。由于相机或激光镜等视觉传感器返回的丰富数据,研究人员能够构建具有各种细节的不同类型的地图,并使用它们来实现高水平的车辆定位准确性和在城市环境中的稳定性。与流行的SLAM方法相反,视觉地图本地化依赖于预先构建的地图,并且仅通过避免误差积累或漂移来提高定位准确性。我们将视觉地图定位定义为两个阶段的过程。在位置识别的阶段,通过将视觉传感器输出与一组地理标记的地图区域进行比较,可以确定车辆在地图中的初始位置。随后,在MAP指标定位的阶段,通过连续将视觉传感器的输出与正在遍历的MAP的当前区域进行对齐,对车辆在地图上移动时进行了跟踪。在本文中,我们调查,讨论和比较两个阶段的基于激光雷达,基于摄像头和跨模式的视觉图本地化的最新方法,以突出每种方法的优势。
translated by 谷歌翻译
任意形状的文本检测是一项具有挑战性的任务,这是由于大小和宽高比,任意取向或形状,不准确的注释等各种变化的任务。最近引起了大量关注。但是,文本的准确像素级注释是强大的,现有的场景文本检测数据集仅提供粗粒的边界注释。因此,始终存在大量错误分类的文本像素或背景像素,从而降低基于分割的文本检测方法的性能。一般来说,像素是否属于文本与与相邻注释边界的距离高度相关。通过此观察,在本文中,我们通过概率图提出了一种创新且可靠的基于分割的检测方法,以准确检测文本实例。为了具体,我们采用Sigmoid alpha函数(SAF)将边界及其内部像素之间的距离传输到概率图。但是,由于粗粒度文本边界注释的不确定性,一个概率图无法很好地覆盖复杂的概率分布。因此,我们采用一组由一系列Sigmoid alpha函数计算出的概率图来描述可能的概率分布。此外,我们提出了一个迭代模型,以学习预测和吸收概率图,以提供足够的信息来重建文本实例。最后,采用简单的区域生长算法来汇总概率图以完成文本实例。实验结果表明,我们的方法在几个基准的检测准确性方面实现了最先进的性能。
translated by 谷歌翻译
对道路网拓扑的了解对于自主规划和导航至关重要。然而,只有部分探讨了从单个图像中恢复此类拓扑结构。此外,它需要指地面平面,也需要驾驶动作。本文旨在提取当地路网拓扑,直接在鸟瞰图(BEV)中,全部都在复杂的城市环境中。唯一的输入包括单个板载,前瞻性相机图像。我们使用一系列定向的车道曲线及其交互来代表道路拓扑,它们使用它们的交叉点捕获。为了更好地捕获拓扑,我们介绍了\ emph {最小循环}及其封面的概念。最小循环是由指向曲线段(两个交叉点)形成的最小循环。盖子是一组曲线,其段涉及形成最小循环。我们首先表明封面足以唯一代表道路拓扑。然后将封面用于监督深度神经网络,以及车道曲线监控。这些学习从单个输入图像预测道路拓扑。 NUSCENES和协会基准测试的结果明显优于基线获得的结果。我们的源代码将公开可用。
translated by 谷歌翻译
这项研究介绍了\ textit {landslide4sense},这是一种从遥感中检测到滑坡检测的参考基准。该存储库具有3,799个图像贴片,可从Sentinel-2传感器中融合光学层,并带有数字高程模型和来自ALOS Palsar的斜率层。附加的地形信息促进了对滑坡边界的准确检测,而最近的研究表明,仅使用光学数据,这是具有挑战性的。广泛的数据集支持在滑坡检测中进行深度学习(DL)研究,以及用于系统更新滑坡库存的方法的开发和验证。基准数据集已在四个不同的时间和地理位置收集:伊伯里(2018年9月),科达古(2018年8月),戈尔卡(2015年4月)和台湾(2009年8月)。每个图像像素均标记为属于滑坡,包括各种来源和彻底的手动注释。然后,我们评估11个最先进的DL分割模型的滑坡检测性能:U-NET,RESU-NET,PSPNET,CONTECTNET,DEEPLAB-V2,DEEPLAB-V3+,FCN-8,LINKNET,FRRRN-A,FRRN-A,, FRRN-B和SQNET。所有型号均已从划痕上对每个研究区域的四分之一的补丁进行培训,并在其他三个季度的独立贴片上进行了测试。我们的实验表明,Resu-NET的表现优于其他模型,用于滑坡检测任务。我们在\ url {www.landslide4sense.org}公开获得多种源滑坡基准数据(Landslide4sense)和经过测试的DL模型,为遥感,计算机视觉和机器学习社区建立了重要的资源通常,尤其是对滑坡检测的应用。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
High-definition (HD) semantic map generation of the environment is an essential component of autonomous driving. Existing methods have achieved good performance in this task by fusing different sensor modalities, such as LiDAR and camera. However, current works are based on raw data or network feature-level fusion and only consider short-range HD map generation, limiting their deployment to realistic autonomous driving applications. In this paper, we focus on the task of building the HD maps in both short ranges, i.e., within 30 m, and also predicting long-range HD maps up to 90 m, which is required by downstream path planning and control tasks to improve the smoothness and safety of autonomous driving. To this end, we propose a novel network named SuperFusion, exploiting the fusion of LiDAR and camera data at multiple levels. We benchmark our SuperFusion on the nuScenes dataset and a self-recorded dataset and show that it outperforms the state-of-the-art baseline methods with large margins. Furthermore, we propose a new metric to evaluate the long-range HD map prediction and apply the generated HD map to a downstream path planning task. The results show that by using the long-range HD maps predicted by our method, we can make better path planning for autonomous vehicles. The code will be available at https://github.com/haomo-ai/SuperFusion.
translated by 谷歌翻译
Semantic segmentation of UAV aerial remote sensing images provides a more efficient and convenient surveying and mapping method for traditional surveying and mapping. In order to make the model lightweight and improve a certain accuracy, this research developed a new lightweight and efficient network for the extraction of ground features from UAV aerial remote sensing images, called LDMCNet. Meanwhile, this research develops a powerful lightweight backbone network for the proposed semantic segmentation model. It is called LDCNet, and it is hoped that it can become the backbone network of a new generation of lightweight semantic segmentation algorithms. The proposed model uses dual multi-scale context modules, namely the Atrous Space Pyramid Pooling module (ASPP) and the Object Context Representation module (OCR). In addition, this research constructs a private dataset for semantic segmentation of aerial remote sensing images from drones. This data set contains 2431 training sets, 945 validation sets, and 475 test sets. The proposed model performs well on this dataset, with only 1.4M parameters and 5.48G floating-point operations (FLOPs), achieving an average intersection-over-union ratio (mIoU) of 71.12%. 7.88% higher than the baseline model. In order to verify the effectiveness of the proposed model, training on the public datasets "LoveDA" and "CITY-OSM" also achieved excellent results, achieving mIoU of 65.27% and 74.39%, respectively.
translated by 谷歌翻译