设想制造部门受到基于人工智能的技术的严重影响,计算能力和数据量的大幅增加。制造业领域的一个核心挑战在于一般框架的要求,以确保满足不同制造应用中的诊断和监视性能。在这里,我们提出了一个通用数据驱动的端到端框架,用于监视制造系统。该框架是从深度学习技术中得出的,评估了融合的感觉测量值,以检测甚至预测故障和磨损条件。这项工作利用了深度学习的预测能力,从嘈杂的时间表数据中自动提取隐藏的降解功能。我们已经在从各种制造应用中绘制的十个代表性数据集上试验了拟议的框架。结果表明,该框架在检查的基准应用中表现良好,可以在不同的情况下应用,这表明其潜在用作智能制造中的关键角石。
translated by 谷歌翻译
在工业应用中,电动机的故障近一半是由于滚动元件轴承(REB)的退化引起的。因此,准确估算REB的剩余使用寿命(RUL)对于确保机械系统的可靠性和安全至关重要。为了应对这一挑战,基于模型的方法通常受到数学建模的复杂性的限制。另一方面,传统的数据驱动方法需要巨大的努力来提取降解功能并构建健康指数。在本文中,提出了一个新颖的在线数据驱动框架,以利用深度卷积神经网络(CNN)的采用来预测轴承的统治。更具体地说,训练轴承的原始振动首先是使用Hilbert-huang变换(HHT)处理的,并将新型的非线性降解指标构建为学习标签。然后使用CNN来识别提取的降解指示器和训练轴承振动之间的隐藏模式,这使得可以自动估计测试轴承的降解。最后,通过使用$ \ epsilon $ -Support向量回归模型来预测测试轴承的规定。与最先进的方法相比,提出的规则估计框架的出色性能通过实验结果证明。提出的CNN模型的一般性也通过转移到经历不同操作条件的轴承来验证。
translated by 谷歌翻译
轴承是容易出乎意料断层的旋转机的重要组成部分之一。因此,轴承诊断和状况监测对于降低众多行业的运营成本和停机时间至关重要。在各种生产条件下,轴承可以在一系列载荷和速度下进行操作,这会导致与每种故障类型相关的不同振动模式。正常数据很足够,因为系统通常在所需条件下工作。另一方面,故障数据很少见,在许多情况下,没有记录故障类别的数据。访问故障数据对于开发数据驱动的故障诊断工具至关重要,该工具可以提高操作的性能和安全性。为此,引入了基于条件生成对抗网络(CGAN)的新型算法。该算法对任何实际故障条件的正常和故障数据进行培训,从目标条件的正常数据中生成故障数据。所提出的方法在现实世界中的数据集上进行了验证,并为不同条件生成故障数据。实施了几种最先进的分类器和可视化模型,以评估合成数据的质量。结果证明了所提出的算法的功效。
translated by 谷歌翻译
卷积神经网络(CNN)由于其强大的特征提取和分类功能而广泛用于机械系统的故障诊断。但是,CNN是一个典型的黑盒模型,CNN决策的机制尚不清楚,这限制了其在高可授权要求的故障诊断方案中的应用。为了解决这个问题,我们提出了一个新颖的可解释的神经网络,称为时频网(TFN),其中物理上有意义的时频变换(TFT)方法被嵌入传统的卷积层中,作为自适应预处理层。这个称为时频卷积(TFCONV)层的预处理层受到精心设计的内核函数的约束,以提取与故障相关的时间频率信息。它不仅改善了诊断性能,而且还揭示了频域中CNN预测的逻辑基础。不同的TFT方法对应于TFCONV层的不同内核函数。在这项研究中,考虑了四种典型的TFT方法来制定TFN,并且通过三个机械故障诊断实验证明了它们的有效性和解释性。实验结果还表明,所提出的TFCONV层可以很容易地推广到具有不同深度的其他CNN。 TFN的代码可在https://github.com/chenqian0618/tfn上获得。
translated by 谷歌翻译
滚动轴承是工业机器中最广泛使用的轴承之一。滚动轴承条件的劣化可导致旋转机械的总失效。基于AI的方法广泛应用于滚动轴承的诊断。已显示杂交NN的方法来达到最佳诊断结果。通常,原始数据由安装在机器壳体上的加速度计产生。然而,每个信号的诊断实用性高度依赖于相应加速度计的位置。本文提出了一种新型混合CNN-MLP模型的诊断方法,其结合了混合输入来执行滚动轴承诊断。该方法使用来自轴安装的无线加速度传感器的加速度数据成功地检测和定位轴承缺陷。实验结果表明,混合模型优于分别操作的CNN和MLP型号,并且可以为轴承故障提供99,6%的高检测精度,而CNN的98%和MLP型号的81%。
translated by 谷歌翻译
通过深度学习(DL)大大扩展了数据驱动故障诊断模型的范围。然而,经典卷积和反复化结构具有计算效率和特征表示的缺陷,而基于注意机制的最新变压器架构尚未应用于该字段。为了解决这些问题,我们提出了一种新颖的时变电片(TFT)模型,其灵感来自序列加工的香草变压器大规模成功。特别是,我们设计了一个新的笨蛋和编码器模块,以从振动信号的时频表示(TFR)中提取有效抽象。在此基础上,本文提出了一种基于时变电片的新的端到端故障诊断框架。通过轴承实验数据集的案例研究,我们构建了最佳变压器结构并验证了其故障诊断性能。与基准模型和其他最先进的方法相比,证明了所提出的方法的优越性。
translated by 谷歌翻译
轴承诊断对于降低旋转机器的损害风险并进一步改善经济利润至关重要。最近,以深度学习为代表的机器学习在轴承诊断方面取得了巨大进展。但是,将深度学习应用到这样的任务仍然面临一个主要问题。众所周知,深层网络是黑匣子。很难知道模型如何分类分类背后的正常原理和物理原理的错误信号。为了解决可解释性问题,首先,我们原型是一个具有最近发明的二次神经元的卷积网络。由于二次神经元的特征表示能力,这种二次神经元授权网络可以鉴定噪声轴承数据。此外,我们通过将学到的二次功能分解为类似于注意力的二次神经元(称为Qttention)的注意机制独立得出了注意力机制,从而使模型具有固有解释的二次神经元。公众和我们的数据集进行的实验表明,提出的网络可以促进有效且可解释的轴承故障诊断。
translated by 谷歌翻译
呼吸声分类中的问题已在去年的临床科学家和医学研究员团体中获得了良好的关注,以诊断Covid-19疾病。迄今为止,各种模型的人工智能(AI)进入了现实世界,从人类生成的声音等人生成的声音中检测了Covid-19疾病,例如语音/言语,咳嗽和呼吸。实现卷积神经网络(CNN)模型,用于解决基于人工智能(AI)的机器上的许多真实世界问题。在这种情况下,建议并实施一个维度(1D)CNN,以诊断Covid-19的呼吸系统疾病,例如语音,咳嗽和呼吸。应用基于增强的机制来改善Covid-19声音数据集的预处理性能,并使用1D卷积网络自动化Covid-19疾病诊断。此外,使用DDAE(数据去噪自动编码器)技术来产生诸如输入功能的深声特征,而不是采用MFCC(MEL频率跳跃系数)的标准输入,并且它更好地执行比以前的型号的准确性和性能。
translated by 谷歌翻译
在这项工作中,我们详细描述了深度学习和计算机视觉如何帮助检测AirTender系统的故障事件,AirTender系统是售后摩托车阻尼系统组件。监测飞行员运行的最有效方法之一是在其表面上寻找油污渍。从实时图像开始,首先在摩托车悬架系统中检测到Airtender,然后二进制分类器确定Airtender是否在溢出油。该检测是在YOLO5架构的帮助下进行的,而分类是在适当设计的卷积神经网络油网40的帮助下进行的。为了更清楚地检测油的泄漏,我们用荧光染料稀释了荧光染料,激发波长峰值约为390 nm。然后用合适的紫外线LED照亮飞行员。整个系统是设计低成本检测设置的尝试。船上设备(例如迷你计算机)被放置在悬架系统附近,并连接到全高清摄像头框架架上。板载设备通过我们的神经网络算法,然后能够将AirTender定位并分类为正常功能(非泄漏图像)或异常(泄漏图像)。
translated by 谷歌翻译
虽然数据驱动的故障诊断方法已被广泛应用,但模型培训需要大规模标记数据。然而,在真正的行业实施这一点难以阻碍这些方法的应用。因此,迫切需要在这种情况下运行良好的有效诊断方法。本​​研究中,多级半监督改进的深度嵌入式聚类(MS-SSIDEC)方法,将半监督学习与改进的深度嵌入式聚类相结合(IDEC),建议共同探索稀缺标记的数据和大规模的未标记数据。在第一阶段,提出了一种可以自动将未标记的数据映射到低维特征空间中的跳过连接的卷积自动编码器(SCCAE),并预先培训以成为故障特征提取器。在第二阶段,提出了一个半监督的改进的深嵌入式聚类(SSIDEC)网络以进行聚类。首先用可用标记数据初始化,然后用于同时优化群集标签分配,并使要素空间更加群集。为了解决过度装备现象,在本阶段将虚拟的对抗培训(增值税)作为正则化术语。在第三阶段,伪标签是通过SSIDEC的高质量结果获得的。标记的数据集可以由这些伪标记的数据增强,然后利用以训练轴承故障诊断模型。来自滚动轴承的两个振动数据数据集用于评估所提出的方法的性能。实验结果表明,该方法在半监督和无监督的故障诊断任务中实现了有希望的性能。该方法通过有效地探索无监督数据,提供了在有限标记样本的情况下的故障诊断方法。
translated by 谷歌翻译
REED继电器是功能测试的基本组成部分,与电子产品的成功质量检查密切相关。为了为REED继电器提供准确的剩余使用寿命(RUL)估计,根据以下三个考虑,提出了具有降解模式聚类的混合深度学习网络。首先,对于REED继电器,观察到多种降解行为,因此提供了基于动态的$ K $ -MEANS聚类,以区分彼此的退化模式。其次,尽管适当的功能选择具有重要意义,但很少有研究可以指导选择。提出的方法建议进行操作规则,以实施轻松实施。第三,提出了用于剩余使用寿命估计的神经网络(RULNET),以解决卷积神经网络(CNN)在捕获顺序数据的时间信息中的弱点,该信息在卷积操作的高级特征表示后结合了时间相关能力。通过这种方式,lulnet的三种变体由健康指标,具有自组织地图的功能或具有曲线拟合的功能构建。最终,将提出的混合模型与典型的基线模型(包括CNN和长期记忆网络(LSTM))进行了比较,该模型通过具有两个不同不同降级方式的实用REED继电器数据集进行了比较。两种降解案例的结果表明,所提出的方法在索引均方根误差方面优于CNN和LSTM。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
随着Gen III核反应堆的质量构建,使用深度学习(DL)技术是一种流行的趋势,以快速有效地诊断可能发生的事故。为了克服使用深度学习理论诊断反应堆事故的先前工作的常见问题,本文提出了一个诊断过程,以确保对嘈杂和残废的数据的鲁棒性稳健性并且可以解释。首先,提出了一种新颖的剥离垫垫自动编码器(DPAE)来提取监视数据,其表示提取器仍在具有高达25.0的信噪比的干扰数据上有效,并监视丢失的数据丢失的数据高达40.0%。其次,提出了使用DPAE编码器提取表示形式的诊断框架,然后提出了浅统计学习算法,并在41.8%和80.8%的分类和回归任务评估指标上测试了这种逐步诊断方法,并在受干扰的数据集上进行了测试 - 到端诊断方法。最后,提出了使用SHAP和特征消融的分层解释算法,以分析输入监视参数的重要性并验证高重要性参数的有效性。这项研究的结果提供了一种参考方法,用于在具有高安全性要求的情况下在场景中构建强大而可解释的智能反应堆异常诊断系统。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
在过去的几十年中,现代工业过程研究了几种具有成本效益的方法,以提高半导体制造的生产率和产量。虽然在促进实时监控和控制方面发挥重要作用,但行业中的数据驱动的软传感器在增强了晶圆故障诊断的深度学习方法时提供了竞争优势。尽管各个领域的深度学习方法取得了成功,但它们倾向于在多变化的软感测数据域上遭受不良性能。为了缓解这一点,我们提出了一种用于晶圆故障诊断分类任务的软感应集合器(卷积式变压器),主要由多头卷积模块组成,可获得快速和轻量级操作的卷曲的益处,以及能力通过多头设计相同的变压器来学习强大的表示。另一个关键问题是传统的学习范式倾向于在嘈杂和高度不平衡的软感测数据上遭受低性能。为了解决这个问题,我们使用基于课程的课程的损失函数增强了我们的软感测符合子模型,这有效地在培训的早期阶段和困难的阶段中学习易于样本。为了进一步展示我们拟议的架构的效用,我们对希捷技术的晶圆制造过程的各种工具进行了广泛的实验,这些工具与这项工作一起分享。据我们所知,这是第一次提出了课程,为软感测数据提出了基于课程的软感测符合子架构,我们的结果表明未来在软传感研究领域的使用中有很强的承诺。
translated by 谷歌翻译
本文提出了一种新的劣化和损坏识别程序(DIP)并应用于建筑模型。与这些类型的结构的应用相关的挑战与响应的强相关性有关,这在应对具有高噪声水平的真实环境振动时进一步复杂化。因此,利用低成本环境振动设计了DIP,以分析使用股票变换(ST)来产生谱图的加速响应。随后,ST输出成为建立的两系列卷积神经网络(CNNS)的输入,用于识别建筑模型的恶化和损坏。据我们所知,这是第一次通过高精度的ST和CNN组合在建筑模型中评估损坏和恶化。
translated by 谷歌翻译
作为自然现象的地震,历史上不断造成伤害和人类生活的损失。地震预测是任何社会计划的重要方面,可以增加公共准备,并在很大程度上减少损坏。然而,由于地震的随机特征以及实现了地震预测的有效和可靠模型的挑战,迄今为止努力一直不足,需要新的方法来解决这个问题。本文意识到​​这些问题,提出了一种基于注意机制(AM),卷积神经网络(CNN)和双向长短期存储器(BILSTM)模型的新型预测方法,其可以预测数量和最大幅度中国大陆各地区的地震为基于该地区的地震目录。该模型利用LSTM和CNN具有注意机制,以更好地关注有效的地震特性并产生更准确的预测。首先,将零阶保持技术应用于地震数据上的预处理,使得模型的输入数据更适当。其次,为了有效地使用空间信息并减少输入数据的维度,CNN用于捕获地震数据之间的空间依赖性。第三,使用Bi-LSTM层来捕获时间依赖性。第四,引入了AM层以突出其重要的特征来实现更好的预测性能。结果表明,该方法具有比其他预测方法更好的性能和概括能力。
translated by 谷歌翻译
睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译
考虑到应用时间序列数据的上下文信息的模型可以改善故障诊断性能,提出了一些神经网络结构(例如RNN,LSTM和GRU)有效地对故障诊断进行建模。但是,这些模型受其串行计算的限制,因此无法实现高诊断效率。同样,平行CNN很难以有效的方式实施故障诊断,因为它需要更大的卷积内核或深层结构才能实现长期特征提取能力。此外,BERT模型还采用绝对位置嵌入以将上下文信息引入模型,这将为原始数据带来噪声,因此不能直接应用于故障诊断。为了解决上述问题,本文提出了一个名为“深层平行时间序列关系网络”(DPTRN)的故障诊断模型。 DPTRN有三个优点:(1)我们提出的时间关系单元基于完整的多层感知器(MLP)结构,因此,DPTRN以并行方式执行故障诊断,并显着提高计算效率。 (2)通过改善绝对位置的嵌入,我们的新型解耦位置嵌入单元可以直接应用于故障诊断并学习上下文信息。 (3)我们提出的DPTRN在功能解释性方面具有明显的优势。我们确认了所提出的方法对四个数据集的影响,结果显示了所提出的DPTRN模型的有效性,效率和解释性。
translated by 谷歌翻译
从智能制造收集的数据的不断增长的可用性正在改变生产监测和控制的范式。除了时变的意外的扰动和不确定性之外,晶片制造过程的复杂性和内容的增加,使得用基于模型的方法进行控制过程,使控制过程不可行。结果,数据驱动的软感测建模在晶圆过程诊断中变得更加普遍。最近,在高度非线性和动态时间序列数据中具有高度性能的软感测系统中已经利用了深度学习。然而,尽管它在软感动系统中取得了成功,但深层学习框架的潜在逻辑很难理解。在本文中,我们提出了一种使用高度不平衡数据集的缺陷晶片检测的深度学习模型。要了解所提出的模型如何工作,应用了深度可视化方法。另外,该模型然后通过深度可视化指导进行微调。进行广泛的实验以验证所提出的系统的有效性。结果提供了一种解释模型工作原理和基于解释的有效微调方法的解释。
translated by 谷歌翻译