探针车的使用日益增长会产生大量的GNS数据。受卫星定位技术的限制,进一步提高地图匹配的准确性是具有挑战性的工作,尤其是对于低频轨迹。当与轨迹匹配时,自我车辆的当前旅行时空信息对于数据量最少而言最有用。此外,还有大量其他数据,例如其他车辆的状态和过去的预测结果,但是很难提取有用的信息来匹配地图和推断路径。大多数地图匹配研究仅使用自我车辆的数据,而忽略了其他车辆的数据。基于它,本文设计了一种新的地图匹配方法,以充分利用“大数据”。首先,我们根据与本匹配探针的空间和时间距离将所有数据分为四组,这使我们能够对其有用性进行排序。然后,我们设计了三种不同的方法来从它们中提取有价值的信息(分数):速度和轴承的分数,历史用法的分数以及使用光谱图马尔可夫中立网络的交通状态分数。最后,我们使用修改后的TOP-K最短路径方法来搜索椭圆区域内的候选路径,然后使用Fused分数推断路径(投影位置)。我们使用中国的现实世界数据集测试了针对基线算法的建议方法。结果表明,所有评分方法都可以增强地图匹配的精度。此外,我们的方法优于其他方法,尤其是当GNSS探测频率小于0.01 Hz时。
translated by 谷歌翻译
追踪和处理当代时代的对象的要求逐渐增加,因为许多应用程序迅速需要精确的移动对象位置。地图匹配方法被用作预处理技术,该技术与相应道路上的移动对象点匹配。但是,大多数GPS轨迹数据集都包含静置的不规则性,这使得匹配算法不匹配轨迹与无关紧要的街道。因此,确定GPS轨迹数据集中的停留点区域会导致更好的准确匹配和更快的方法。在这项工作中,我们将停留点集中在带有DBSCAN的轨迹数据集中,并消除冗余数据,以通过降低处理时间来提高MAP匹配算法的效率。与基于模糊逻辑的地图匹配算法相比,我们认为我们提出的方法的性能和精确性。幸运的是,我们的方法可产生27.39%的数据尺寸减少和8.9%的处理时间缩短,其准确结果与以前的基于模糊的MAP匹配方法相同。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
GPS trajectories are the essential foundations for many trajectory-based applications, such as travel time estimation, traffic prediction and trajectory similarity measurement. Most applications require a large amount of high sample rate trajectories to achieve a good performance. However, many real-life trajectories are collected with low sample rate due to energy concern or other constraints.We study the task of trajectory recovery in this paper as a means for increasing the sample rate of low sample trajectories. Currently, most existing works on trajectory recovery follow a sequence-to-sequence diagram, with an encoder to encode a trajectory and a decoder to recover real GPS points in the trajectory. However, these works ignore the topology of road network and only use grid information or raw GPS points as input. Therefore, the encoder model is not able to capture rich spatial information of the GPS points along the trajectory, making the prediction less accurate and lack spatial consistency. In this paper, we propose a road network enhanced transformer-based framework, namely RNTrajRec, for trajectory recovery. RNTrajRec first uses a graph model, namely GridGNN, to learn the embedding features of each road segment. It next develops a spatial-temporal transformer model, namely GPSFormer, to learn rich spatial and temporal features along with a Sub-Graph Generation module to capture the spatial features for each GPS point in the trajectory. It finally forwards the outputs of encoder model into a multi-task decoder model to recover the missing GPS points. Extensive experiments based on three large-scale real-life trajectory datasets confirm the effectiveness of our approach.
translated by 谷歌翻译
Traffic state prediction in a transportation network is paramount for effective traffic operations and management, as well as informed user and system-level decision-making. However, long-term traffic prediction (beyond 30 minutes into the future) remains challenging in current research. In this work, we integrate the spatio-temporal dependencies in the transportation network from network modeling, together with the graph convolutional network (GCN) and graph attention network (GAT). To further tackle the dramatic computation and memory cost caused by the giant model size (i.e., number of weights) caused by multiple cascaded layers, we propose sparse training to mitigate the training cost, while preserving the prediction accuracy. It is a process of training using a fixed number of nonzero weights in each layer in each iteration. We consider the problem of long-term traffic speed forecasting for a real large-scale transportation network data from the California Department of Transportation (Caltrans) Performance Measurement System (PeMS). Experimental results show that the proposed GCN-STGT and GAT-STGT models achieve low prediction errors on short-, mid- and long-term prediction horizons, of 15, 30 and 45 minutes in duration, respectively. Using our sparse training, we could train from scratch with high sparsity (e.g., up to 90%), equivalent to 10 times floating point operations per second (FLOPs) reduction on computational cost using the same epochs as dense training, and arrive at a model with very small accuracy loss compared with the original dense training
translated by 谷歌翻译
近年来,道路安全引起了智能运输系统领域的研究人员和从业者的重大关注。作为最常见的道路用户群体之一,行人由于其不可预测的行为和运动而导致令人震惊,因为车辆行人互动的微妙误解可以很容易地导致风险的情况或碰撞。现有方法使用预定义的基于碰撞的模型或人类标签方法来估计行人的风险。这些方法通常受到他们的概括能力差,缺乏对自我车辆和行人之间的相互作用的限制。这项工作通过提出行人风险级预测系统来解决所列问题。该系统由三个模块组成。首先,收集车辆角度的行人数据。由于数据包含关于自我车辆和行人的运动的信息,因此可以简化以交互感知方式预测时空特征的预测。使用长短短期存储器模型,行人轨迹预测模块预测后续五个框架中的时空特征。随着预测的轨迹遵循某些交互和风险模式,采用混合聚类和分类方法来探讨时空特征中的风险模式,并使用学习模式训练风险等级分类器。在预测行人的时空特征并识别相应的风险水平时,确定自我车辆和行人之间的风险模式。实验结果验证了PRLP系统的能力,以预测行人的风险程度,从而支持智能车辆的碰撞风险评估,并为车辆和行人提供安全警告。
translated by 谷歌翻译
交通速度预测是许多有价值应用程序的关键,由于其各种影响因素,它也是一项具有挑战性的任务。最近的工作试图通过各种混合模型获得更多信息,从而提高了预测准确性。但是,这些方法的空间信息采集方案存在两级分化问题。建模很简单,但包含很少的空间信息,或者建模是完整的,但缺乏灵活性。为了基于确保灵活性引入更多空间信息,本文提出了IRNET(可转让的交叉点重建网络)。首先,本文将相交重建为与相同结构的虚拟交集,从而简化了道路网络的拓扑结构。然后,将空间信息细分为交叉信息和交通流向的序列信息,并通过各种模型获得时空特征。第三,一种自我发项机制用于融合时空特征以进行预测。在与基线的比较实验中,不仅预测效应,而且转移性能具有明显的优势。
translated by 谷歌翻译
Recently, numerous studies have investigated cooperative traffic systems using the communication among vehicle-to-everything (V2X). Unfortunately, when multiple autonomous vehicles are deployed while exposed to communication failure, there might be a conflict of ideal conditions between various autonomous vehicles leading to adversarial situation on the roads. In South Korea, virtual and real-world urban autonomous multi-vehicle races were held in March and November of 2021, respectively. During the competition, multiple vehicles were involved simultaneously, which required maneuvers such as overtaking low-speed vehicles, negotiating intersections, and obeying traffic laws. In this study, we introduce a fully autonomous driving software stack to deploy a competitive driving model, which enabled us to win the urban autonomous multi-vehicle races. We evaluate module-based systems such as navigation, perception, and planning in real and virtual environments. Additionally, an analysis of traffic is performed after collecting multiple vehicle position data over communication to gain additional insight into a multi-agent autonomous driving scenario. Finally, we propose a method for analyzing traffic in order to compare the spatial distribution of multiple autonomous vehicles. We study the similarity distribution between each team's driving log data to determine the impact of competitive autonomous driving on the traffic environment.
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
估计路径的旅行时间是智能运输系统的重要主题。它是现实世界应用的基础,例如交通监控,路线计划和出租车派遣。但是,为这样的数据驱动任务构建模型需要大量用户的旅行信息,这与其隐私直接相关,因此不太可能共享。数据所有者之间的非独立和相同分布的(非IID)轨迹数据也使一个预测模型变得极具挑战性,如果我们直接应用联合学习。最后,以前关于旅行时间估算的工作并未考虑道路的实时交通状态,我们认为这可以极大地影响预测。为了应对上述挑战,我们为移动用户组引入GOF-TTE,生成的在线联合学习框架以进行旅行时间估计,这是我)使用联合学习方法,允许在培训时将私人数据保存在客户端设备上,并设计设计和设计。所有客户共享的全球模型作为在线生成模型推断实时道路交通状态。 ii)除了在服务器上共享基本模型外,还针对每个客户调整了一个微调的个性化模型来研究其个人驾驶习惯,从而弥补了本地化全球模型预测的残余错误。 %iii)将全球模型设计为所有客户共享的在线生成模型,以推断实时道路交通状态。我们还对我们的框架采用了简单的隐私攻击,并实施了差异隐私机制,以进一步保证隐私安全。最后,我们对Didi Chengdu和Xi'an的两个现实世界公共出租车数据集进行了实验。实验结果证明了我们提出的框架的有效性。
translated by 谷歌翻译
流量预测在智能运输系统中交通控制和调度任务的实现中起着重要作用。随着数据源的多元化,合理地使用丰富的流量数据来对流量流中复杂的时空依赖性和非线性特征进行建模是智能运输系统的关键挑战。此外,清楚地评估从不同数据中提取的时空特征的重要性成为一个挑战。提出了双层 - 空间时间特征提取和评估(DL -STFEE)模型。 DL-STFEE的下层是时空特征提取层。流量数据中的空间和时间特征是通过多画图卷积和注意机制提取的,并生成了空间和时间特征的不同组合。 DL-STFEE的上层是时空特征评估层。通过高维自我注意力发项机制产生的注意力评分矩阵,空间特征组合被融合和评估,以便获得不同组合对预测效应的影响。在实际的流量数据集上进行了三组实验,以表明DL-STFEE可以有效地捕获时空特征并评估不同时空特征组合的重要性。
translated by 谷歌翻译
人工智能的繁荣引起了智能/自主导航的密集利益,其中路径预测是决策支持的关键功能,例如,路线规划,碰撞警告和交通规例。对于海上情报,自动识别系统(AIS)起着重要作用,因为它最近已经为大型国际商业船只制作了强制性,并且能够提供船只的几乎实时信息。因此,基于AIS数据的船舶路径预测是未来海洋智能的有希望的方式。然而,在线收集的现实世界AIS数据只是来自不同类型的船只和地理区域的高度不规则的轨迹段(AIS消息序列),数据质量可能非常低。所以即使有一些作品研究如何使用历史AIS数据建立路径预测模型,但仍然是一个非常具有挑战性的问题。在本文中,我们提出了一个全面的框架来模拟大规模历史AIS轨迹段,以获得精确的血管路径预测。通过现有流行方法进行实验比较验证所提出的方法,结果表明,我们的方法可以通过广泛的边缘来优异地呈现基线方法。
translated by 谷歌翻译
由于物联网(IoT)技术的快速开发,许多在线Web应用程序(例如Google Map和Uber)估计移动设备收集的轨迹数据的旅行时间。但是,实际上,复杂的因素(例如网络通信和能量限制)使以低采样率收集的多个轨迹。在这种情况下,本文旨在解决稀疏场景中的旅行时间估计问题(TTE)和路线恢复问题,这通常会导致旅行时间的不确定标签以及连续采样的GPS点之间的路线。我们将此问题提出为不进行的监督问题,其中训练数据具有粗糙的标签,并共同解决了TTE和路线恢复的任务。我们认为,这两个任务在模型学习过程中彼此互补并保持这种关系:更精确的旅行时间可以使路由更好地推断,从而导致更准确的时间估计)。基于此假设,我们提出了一种EM算法,以替代E估计通过E步中通过弱监督的推断路线的行进时间,并根据M步骤中的估计行进时间来检索途径,以稀疏轨迹。我们对三个现实世界轨迹数据集进行了实验,并证明了该方法的有效性。
translated by 谷歌翻译
原始目的地估计在智能运输系统(其)时代的交通管理和流量模拟中起着重要作用。然而,以前的基于模型的模型面临不确定的挑战,因此存在对额外假设和额外数据的绝望需求。深度学习提供了基于基于数据的理想方法,用于通过概率分布转换连接输入和结果。虽然将深入学习的相关研究由于跨代表空间的数据转换挑战而受到限制,但特别是在该问题中的动态空间空间到异构图。为了解决它,我们提出了基于具有双层注意机制的新型图形匹配器的循环图本心匹配编码器(C-Game)。它实现了基础特征空间中的有效信息交换,并建立了空间的耦合关系。拟议的模型实现了最先进的实验结果,并在潜在就业中的空间中提供了一种新颖的推理任务框架。
translated by 谷歌翻译
准确的交通状况预测为车辆环境协调和交通管制任务提供了坚实的基础。由于道路网络数据在空间分布中的复杂性以及深度学习方法的多样性,有效定义流量数据并充分捕获数据中复杂的空间非线性特征变得具有挑战性。本文将两种分层图池方法应用于流量预测任务,以减少图形信息冗余。首先,本文验证了流量预测任务中层次图池方法的有效性。分层图合并方法与其他基线在预测性能上形成鲜明对比。其次,应用了两种主流分层图池方法,节点群集池和节点下降池,用于分析流量预测中的优势和弱点。最后,对于上述图神经网络,本文比较了不同图网络输入对流量预测准确性的预测效应。分析和汇总定义图网络的有效方法。
translated by 谷歌翻译
本文通过组合有限的交通量和车辆轨迹数据来解决估计道路网络中链接流的问题。虽然循环检测器的流量量数据是链路流估计的常见数据源,但检测器仅涵盖链接的子集。如今,还合并了从车辆跟踪传感器收集的车辆轨迹数据。然而,轨迹数据通常很少,因为观察到的轨迹仅代表整个种群的一小部分,其中确切的采样率未知,并且可能在时空和时间上有所不同。这项研究提出了一个新颖的生成建模框架,在其中我们使用马尔可夫决策过程框架制定了车辆的链接到连接运动作为顺序决策问题,并训练代理商做出顺序决策以生成逼真的合成车辆轨迹。我们使用加强学习(RL)的方法来找到代理的最佳行为,基于哪些合成人口车辆轨迹可以生成以估算整个网络中的连接流。为了确保生成的人口车辆轨迹与观察到的交通量和轨迹数据一致,提出了两种基于逆强化学习和约束强化学习的方法。通过解决真实的道路网络中的链路流估计问题,通过这些基于RL的方法中的任何一个求解的提出的生成建模框架都可以验证。此外,我们执行全面的实验,以将性能与两种现有方法进行比较。结果表明,在现实情况下,提出的框架具有较高的估计准确性和鲁棒性,在现实情况下,未满足有关驾驶员的某些行为假设或轨迹数据的网络覆盖范围和渗透率较低。
translated by 谷歌翻译
车辆到达时间预测已被广泛研究。随着物联网设备和深度学习技术的出现,估计的到达时间(ETA)已成为智能运输系统中的关键组成部分。尽管ETA存在许多工具,但由于特殊车辆的交通数据有限,ETA的特殊车辆(例如救护车,消防车等)仍然具有挑战性。现有作品使用一种模型用于所有类型的车辆,这可能会导致精确度较低。为了解决这个问题,作为该领域的第一个,我们为驾驶时间预测提出了一个深度转移学习框架TLETA。 TLETA构建了细胞时空知识网格,用于提取驾驶模式,并结合道路网络结构嵌入以构建ETA的深神经网络。 Tleta包含可转移的层,以支持不同类别的车辆之间的知识转移。重要的是,我们的转移模型仅训练最后一层以绘制转移的知识,从而大大减少了训练时间。实验研究表明,我们的模型以高精度预测旅行时间,并胜过许多最先进的方法。
translated by 谷歌翻译
估计到达时间(ETA)预测时间(也称为旅行时间估计)是针对各种智能运输应用程序(例如导航,路线规划和乘车服务)的基本任务。为了准确预测一条路线的旅行时间,必须考虑到上下文和预测因素,例如空间 - 周期性的互动,驾驶行为和交通拥堵传播的推断。先前在百度地图上部署的ETA预测模型已经解决了时空相互作用(constgat)和驾驶行为(SSML)的因素。在这项工作中,我们专注于建模交通拥堵传播模式以提高ETA性能。交通拥堵的传播模式建模具有挑战性,它需要考虑到随着时间的推移影响区域的影响区域,以及延迟变化随时间变化的累积影响,这是由于道路网络上的流量事件引起的。在本文中,我们提出了一个实用的工业级ETA预测框架,名为Dueta。具体而言,我们基于交通模式的相关性构建了一个对拥堵敏感的图,并开发了一种路线感知图形变压器,以直接学习路段的长距离相关性。该设计使Dueta能够捕获空间遥远但与交通状况高度相关的路段对之间的相互作用。广泛的实验是在从百度地图收集的大型现实世界数据集上进行的。实验结果表明,ETA预测可以从学习的交通拥堵传播模式中显着受益。此外,Dueta已经在Baidu Maps的生产中部署,每天都有数十亿个请求。这表明Dueta是用于大规模ETA预测服务的工业级和强大的解决方案。
translated by 谷歌翻译
本文为可以提取车辆间交互的自治车辆提供特定于自主车辆的驾驶员风险识别框架。在驾驶员认知方式下对城市驾驶场景进行了这种提取,以提高风险场景的识别准确性。首先,将群集分析应用于驱动程序的操作数据,以学习不同驱动程序风险场景的主观评估,并为每个场景生成相应的风险标签。其次,采用图形表示模型(GRM)统一和构建动态车辆,车间交互和静态交通标记的实际驾驶场景中的特征。驾驶员特定的风险标签提供了实践,以捕获不同司机的风险评估标准。此外,图形模型表示驾驶场景的多个功能。因此,所提出的框架可以了解不同驱动程序的驾驶场景的风险评估模式,并建立特定于驱动程序的风险标识符。最后,通过使用由多个驱动程序收集的现实世界城市驾驶数据集进行的实验评估所提出的框架的性能。结果表明,建议的框架可以准确地识别实际驾驶环境中的风险及其水平。
translated by 谷歌翻译
Accurate spatial-temporal traffic flow forecasting is essential for helping traffic managers to take control measures and drivers to choose the optimal travel routes. Recently, graph convolutional networks (GCNs) have been widely used in traffic flow prediction owing to their powerful ability to capture spatial-temporal dependencies. The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs, and it is still an open question. This paper proposes reconstructing the binary adjacency matrix via tensor decomposition, and a traffic flow forecasting method is proposed. First, we reformulate the spatial-temporal fusion graph adjacency matrix into a three-way adjacency tensor. Then, we reconstructed the adjacency tensor via Tucker decomposition, wherein more informative and global spatial-temporal dependencies are encoded. Finally, a Spatial-temporal Synchronous Graph Convolutional module for localized spatial-temporal correlations learning and a Dilated Convolution module for global correlations learning are assembled to aggregate and learn the comprehensive spatial-temporal dependencies of the road network. Experimental results on four open-access datasets demonstrate that the proposed model outperforms state-of-the-art approaches in terms of the prediction performance and computational cost.
translated by 谷歌翻译