许多复杂网络的结构包括其拓扑顶部的边缘方向性和权重。可以无缝考虑这些属性组合的网络分析是可取的。在本文中,我们研究了两个重要的这样的网络分析技术,即中心和聚类。采用信息流基于集群的模型,该模型本身就是在计算中心的信息定理措施时构建。我们的主要捐款包括马尔可夫熵中心的广义模型,灵活地调整节点度,边缘权重和方向的重要性,具有闭合形式的渐近分析。它导致一种新颖的两级图形聚类算法。中心分析有助于推理我们对给定图形的方法的适用性,并确定探索当地社区结构的“查询”节点,从而导致群集聚类机制。熵中心计算由我们的聚类算法摊销,使其计算得高效:与使用马尔可夫熵中心为聚类的先前方法相比,我们的实验表明了多个速度的速度。我们的聚类算法自然地继承了适应边缘方向性的灵活性,以及​​边缘权重和节点度之间的不同解释和相互作用。总的来说,本文不仅具有显着的理论和概念贡献,还转化为实际相关性的文物,产生新的,有效和可扩展的中心计算和图形聚类算法,其有效通过广泛的基准测试进行了验证。
translated by 谷歌翻译
随机块模型(SBM)是一个随机图模型,其连接不同的顶点组不同。它被广泛用作研究聚类和社区检测的规范模型,并提供了肥沃的基础来研究组合统计和更普遍的数据科学中出现的信息理论和计算权衡。该专着调查了最近在SBM中建立社区检测的基本限制的最新发展,无论是在信息理论和计算方案方面,以及各种恢复要求,例如精确,部分和弱恢复。讨论的主要结果是在Chernoff-Hellinger阈值中进行精确恢复的相转换,Kesten-Stigum阈值弱恢复的相变,最佳的SNR - 单位信息折衷的部分恢复以及信息理论和信息理论之间的差距计算阈值。该专着给出了在寻求限制时开发的主要算法的原则推导,特别是通过绘制绘制,半定义编程,(线性化)信念传播,经典/非背带频谱和图形供电。还讨论了其他块模型的扩展,例如几何模型和一些开放问题。
translated by 谷歌翻译
The stochastic block model (SBM) is a random graph model with planted clusters. It is widely employed as a canonical model to study clustering and community detection, and provides generally a fertile ground to study the statistical and computational tradeoffs that arise in network and data sciences.This note surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational thresholds, and for various recovery requirements such as exact, partial and weak recovery (a.k.a., detection). The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the learning of the SBM parameters and the gap between information-theoretic and computational thresholds.The note also covers some of the algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, linearized belief propagation, classical and nonbacktracking spectral methods. A few open problems are also discussed.
translated by 谷歌翻译
马尔可夫链是一类概率模型,在定量科学中已广泛应用。这部分是由于它们的多功能性,但是可以通过分析探测的便利性使其更加复杂。本教程为马尔可夫连锁店提供了深入的介绍,并探索了它们与图形和随机步行的联系。我们利用从线性代数和图形论的工具来描述不同类型的马尔可夫链的过渡矩阵,特别着眼于探索与这些矩阵相对应的特征值和特征向量的属性。提出的结果与机器学习和数据挖掘中的许多方法有关,我们在各个阶段描述了这些方法。本文并没有本身就成为一项新颖的学术研究,而是提出了一些已知结果的集合以及一些新概念。此外,该教程的重点是向读者提供直觉,而不是正式的理解,并且仅假定对线性代数和概率理论的概念的基本曝光。因此,来自各种学科的学生和研究人员可以访问它。
translated by 谷歌翻译
图形嵌入是将网络的节点转换为一组向量。良好的嵌入应捕获底层图形拓扑和结构,节点到节点关系以及图形,其子图和节点的其他相关信息。如果实现了这些目标,则嵌入是网络的有意义,可以理解的,通常是压缩的。不幸的是,选择最好的嵌入是一个具有挑战性的任务,并且通常需要域名专家。在本文中,我们扩展了评估作者最近引入的图形嵌入的框架。现在,该框架为每个嵌入的嵌入分配两个分数,本地和全局,测量评估嵌入的嵌入的质量,以便分别需要良好地表示网络的全局属性。如果需要,最好的嵌入可以以无监督的方式选择,或者框架可以识别一些值得进一步调查的少数嵌入。该框架灵活,可扩展,可以处理无向/定向,加权/未加权图。
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译
The local optima network model has proved useful in the past in connection with combinatorial optimization problems. Here we examine its extension to the real continuous function domain. Through a sampling process, the model builds a weighted directed graph which captures the function's minima basin structure and its interconnection and which can be easily manipulated with the help of complex networks metrics. We show that the model provides a complementary view of function spaces that is easier to analyze and visualize, especially at higher dimension. In particular, we show that function hardness as represented by algorithm performance, is strongly related to several graph properties of the corresponding local optima network, opening the way for a classification of problem difficulty according to the corresponding graph structure and with possible extensions in the design of better metaheuristic approaches.
translated by 谷歌翻译
图形嵌入是图形节点到一组向量的转换。良好的嵌入应捕获图形拓扑,节点与节点的关系以及有关图,其子图和节点的其他相关信息。如果实现了这些目标,则嵌入是网络中有意义的,可理解的,可理解的压缩表示形式,可用于其他机器学习工具,例如节点分类,社区检测或链接预测。主要的挑战是,需要确保嵌入很好地描述图形的属性。结果,选择最佳嵌入是一项具有挑战性的任务,并且通常需要领域专家。在本文中,我们在现实世界网络和人为生成的网络上进行了一系列广泛的实验,并使用选定的图嵌入算法进行了一系列的实验。根据这些实验,我们制定了两个一般结论。首先,如果需要在运行实验之前选择一种嵌入算法,则Node2Vec是最佳选择,因为它在我们的测试中表现最好。话虽如此,在所有测试中都没有单一的赢家,此外,大多数嵌入算法都具有应该调整并随机分配的超参数。因此,如果可能的话,我们对从业者的主要建议是生成几个问题的嵌入,然后使用一个通用框架,该框架为无监督的图形嵌入比较提供了工具。该框架(最近在文献中引入并在GitHub存储库中很容易获得)将分歧分数分配给嵌入,以帮助区分好的分数和不良的分数。
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
能够捕获与特征向量的时间序列的特征是具有多种应用的非常重要的任务,例如分类,聚类或预测。通常,该特征是从线性和非线性时间序列测量获得的特征,其可能存在若干数据相关的缺点。在这项工作中,我们将NetF介绍作为替代特征,包括时间序列的不同复杂网络映射的几种代表性拓扑测量。我们的方法不需要数据预处理,并且无论任何数据特征如何,都适用。探索我们的新颖特征向量,我们能够将映射的网络功能连接到多样化的时间序列模型中固有的属性,显示NetF可以有用的时间数据。此外,我们还展示了我们在聚类合成和基准时间序列组中的方法的适用性,比较其具有更多传统功能的性能,展示了Netf如何实现高精度集群。我们的结果非常有前途,具有来自不同映射方法的网络特征,捕获时间序列的不同属性,将不同且丰富的功能设置为文献。
translated by 谷歌翻译
在基于图形的应用程序中,一个常见的任务是查明(指示或无向)图中最重要或最重要的“中央”顶点,或根据图形的重要性对图表进行排名。为此,文献中已经提出了许多所谓的中心度度量,以评估图中哪些顶点是最重要的。里弗罗斯(Riveros)和萨拉斯(Salas)在ICDT 2020论文中提出了基于以下直觉原理的中心度度量:图中顶点的重要性是相对于``相关''连接的子读数的数量,称为子图基序,称为子图基序,周围。我们将上述原理得出的措施称为子图基措施。人们令人信服地认为,亚图主题措施非常适合图形数据库应用程序。尽管ICDT论文研究了子图案措施所享有的几种有利的特性,但它们的绝对表现力仍然很大程度上没有探索。这项工作的目的是精确表征子图主题措施家族的绝对表现力。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here. The two conference papers upon which this article is based (KDD 2003 and ICALP 2005) provide the first provable approximation guarantees for efficient algorithms. Using an The present article is an expanded version of two conference papers [51,52], which appeared in KDD 2003 and ICALP 2005, respectively.
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
在机器学习中调用多种假设需要了解歧管的几何形状和维度,理论决定了需要多少样本。但是,在应用程序数据中,采样可能不均匀,歧管属性是未知的,并且(可能)非纯化;这意味着社区必须适应本地结构。我们介绍了一种用于推断相似性内核提供数据的自适应邻域的算法。从本地保守的邻域(Gabriel)图开始,我们根据加权对应物进行迭代率稀疏。在每个步骤中,线性程序在全球范围内产生最小的社区,并且体积统计数据揭示了邻居离群值可能违反了歧管几何形状。我们将自适应邻域应用于非线性维度降低,地球计算和维度估计。与标准算法的比较,例如使用K-Nearest邻居,证明了它们的实用性。
translated by 谷歌翻译
通常,使用网络编码在物理,生物,社会和信息科学中应用程序中复杂系统中实体之间的交互体系结构。为了研究复杂系统的大规模行为,研究网络中的中尺度结构是影响这种行为的构件。我们提出了一种新方法来描述网络中的低率中尺度结构,并使用多种合成网络模型和经验友谊,协作和蛋白质 - 蛋白质相互作用(PPI)网络说明了我们的方法。我们发现,这些网络拥有相对较少的“潜在主题”,可以成功地近似固定的中尺度上网络的大多数子图。我们使用一种称为“网络词典学习”(NDL)的算法,该算法结合了网络采样方法和非负矩阵分解,以学习给定网络的潜在主题。使用一组潜在主题对网络进行编码的能力具有多种应用于网络分析任务的应用程序,例如比较,降解和边缘推理。此外,使用我们的新网络去核和重建(NDR)算法,我们演示了如何通过仅使用直接从损坏的网络中学习的潜在主题来贬低损坏的网络。
translated by 谷歌翻译
Infomap是一种流行的方法,用于检测网络中节点的密度连接的“社区”。要检测此类社区,它建立在标准类型的马尔可夫链和信息理论中的想法。通过在网络上传播的疾病动态的动机,其节点可能具有异质疾病脱模速率,我们将Infomap扩展到吸收随机散步。为此,我们使用吸收缩放的图形,其中边缘权重根据吸收率缩放,以及马尔可夫时间扫描。我们的Infomap的一个扩展之一会聚到Infomap的标准版本,其中吸收率接近$ 0 $。我们发现,使用我们的Infomap扩展检测的社区结构可以从社区结构中显着不同,即一个使用不考虑节点吸收率的方法检测。此外,我们表明,局部动态引起的社区结构可以对环形格网络上的敏感感染恢复(SIR)动力学产生重要意义。例如,我们发现在适度数量的节点具有大的节点吸收率时,爆发持续时间最大化的情况。我们还使用我们的Infomap扩展来研究性接触网络中的社区结构。我们认为社区结构,与网络中无家可归者的不同吸收率相对应,以及对网络上的梅毒动力学的相关影响。我们观察到,当无家可归者人口中的治疗率低于其他人群时,当治疗率较低时,最终爆发规模可能会比其他人口相同。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
社区检测是网络科学中最重要的方法领域之一,在过去的几十年里引起了大量关注的方法之一。该区域处理网络的自动部门到基础构建块中,目的是提供其大规模结构的概要。尽管它的重要性和广泛的采用普及,所谓的最先进和实际在各种领域实际使用的方法之间存在明显的差距。在这里,我们试图通过根据是否具有“描述性”或“推论”目标来划分现有方法来解决这种差异。虽然描述性方法在基于社区结构的直观概念的网络中找到模式的模式,但是推理方法阐述了精确的生成模型,并尝试将其符合数据。通过这种方式,他们能够为网络形成机制提供见解,并以统计证据支持的方式与随机性的单独结构。我们审查如何使用推论目标采用描述性方法被陷入困境和误导性答案,因此应该一般而言。我们认为推理方法更通常与更清晰的科学问题一致,产生更强大的结果,并且应该是一般的首选。我们试图消除一些神话和半真半假在实践中使用社区检测时,努力改善这些方法的使用以及对结果的解释。
translated by 谷歌翻译