Digital security has been an active area of research interest due to the rapid adaptation of internet infrastructure, the increasing popularity of social media, and digital cameras. Due to inherent differences in working principles to generate an image, different camera brands left behind different intrinsic processing noises which can be used to identify the camera brand. In the last decade, many signal processing and deep learning-based methods have been proposed to identify and isolate this noise from the scene details in an image to detect the source camera brand. One prominent solution is to utilize a hierarchical classification system rather than the traditional single-classifier approach. Different individual networks are used for brand-level and model-level source camera identification. This approach allows for better scaling and requires minimal modifications for adding a new camera brand/model to the solution. However, using different full-fledged networks for both brand and model-level classification substantially increases memory consumption and training complexity. Moreover, extracted low-level features from the different network's initial layers often coincide, resulting in redundant weights. To mitigate the training and memory complexity, we propose a classifier-block-level hierarchical system instead of a network-level one for source camera model classification. Our proposed approach not only results in significantly fewer parameters but also retains the capability to add a new camera model with minimal modification. Thorough experimentation on the publicly available Dresden dataset shows that our proposed approach can achieve the same level of state-of-the-art performance but requires fewer parameters compared to a state-of-the-art network-level hierarchical-based system.
translated by 谷歌翻译
源相机识别工具辅助图像法医调查人员将讨论的图像与可疑摄像机相关联。已经基于在获取期间图像中留下的微妙迹线的分析来开发了各种技术。由传感器缺陷引起的照片响应非均匀性(PRNU)噪声模式已被证明是识别源相机的有效方法。现有文献表明,PRNU是唯一是特定于设备的指纹,并且能够识别确切的源设备。然而,PRNU易受相机设置,图像内容,图像处理操作和反务攻击的影响。法医调查员不知道反务攻击​​或附带图像操纵有误导的风险。两个PRNU匹配期间的空间同步要求也代表了PRNU的一个主要限制。近年来,基于深度学习的方法在识别源相机模型方面取得了成功。然而,通过这些数据驱动方法识别相同模型的各个摄像机仍然不令人满意。在本文中,我们可以在数字图像中阐明能够识别相同模型的各个摄像机的数字图像中的新的强大数据驱动设备特定指纹。发现新设备指纹是独立于无关的,随机性的,全局可用,解决空间同步问题。与驻留在高频带中的PRNU不同,从低频和中频频带提取新的设备指纹,这解析了PRNU无法抗争的脆弱问题。我们对各种数据集的实验表明,新的指纹对图像操纵具有高度弹性,例如旋转,伽马校正和侵略性JPEG压缩。
translated by 谷歌翻译
区分计算机生成(CG)和自然摄影图像(PG)图像对于验证数字图像的真实性和独创性至关重要。但是,最近的尖端生成方法使CG图像中的合成质量很高,这使得这项具有挑战性的任务变得更加棘手。为了解决这个问题,提出了具有深层质地和高频特征的联合学习策略,以进行CG图像检测。我们首先制定并深入分析CG和PG图像的不同采集过程。基于这样的发现,即图像采集中的多个不同模块将导致对图像中基于卷积神经网络(CNN)渲染的不同敏感性不一致,我们提出了一个深层纹理渲染模块,以增强纹理差异和歧视性纹理表示。具体而言,生成语义分割图来指导仿射转换操作,该操作用于恢复输入图像不同区域中的纹理。然后,原始图像和原始图像和渲染图像的高频组件的组合被馈入配备了注意机制的多支球神经网络,该神经网络分别优化了中间特征,并分别促进了空间和通道维度的痕量探索。在两个公共数据集和一个具有更现实和多样化图像的新构建的数据集上进行的广泛实验表明,所提出的方法的表现优于现有方法,从而明确的余量。此外,结果还证明了拟议方法后处理操作和生成对抗网络(GAN)生成的图像的检测鲁棒性和泛化能力。
translated by 谷歌翻译
在过去的十年中,使用深度学习方法从胸部X光片检测到胸部X光片是一个活跃的研究领域。大多数以前的方法试图通过识别负责对模型预测的重要贡献的空间区域来关注图像的患病器官。相比之下,专家放射科医生在确定这些区域是否异常之前首先找到突出的解剖结构。因此,将解剖学知识纳入深度学习模型可能会带来自动疾病分类的大幅改善。在此激励的情况下,我们提出了解剖学XNET,这是一种基于解剖学注意的胸腔疾病分类网络,该网络优先考虑由预识别的解剖区域引导的空间特征。我们通过利用可用的小规模器官级注释来采用半监督的学习方法,将解剖区域定位在没有器官级注释的大规模数据集中。拟议的解剖学XNET使用预先训练的Densenet-121作为骨干网络,具有两个相应的结构化模块,解剖学意识到($^3 $)和概率加权平均池(PWAP),在凝聚力框架中引起解剖学的关注学习。我们通过实验表明,我们提出的方法通过在三个公开可用的大规模CXR数据集中获得85.78%,92.07%和84.04%的AUC得分来设置新的最先进基准测试。和模拟CXR。这不仅证明了利用解剖学分割知识来改善胸病疾病分类的功效,而且还证明了所提出的框架的普遍性。
translated by 谷歌翻译
移动设备上的低光成像通常是由于不足的孔径穿过相对较小的孔径而挑战,导致信噪比较低。以前的大多数关于低光图像处理的作品仅关注单个任务,例如照明调整,颜色增强或删除噪声;或在密切依赖于从特定的摄像机模型中收集的长时间曝光图像对的关节照明调整和降解任务上,因此,这些方法在需要摄像机特定的关节增强和恢复的现实环境中不太实用且可推广。为了解决这个问题,在本文中,我们提出了一个低光图像处理框架,该框架可以执行关节照明调整,增强色彩和降解性。考虑到模型特异性数据收集的难度和捕获图像的超高定义,我们设计了两个分支:系数估计分支以及关节增强和denoising分支。系数估计分支在低分辨率空间中起作用,并预测通过双边学习增强的系数,而关节增强和去核分支在全分辨率空间中工作,并逐步执行关节增强和脱氧。与现有方法相反,我们的框架在适应另一个摄像机模型时不需要回忆大量数据,这大大减少了微调我们用于实际使用方法所需的努力。通过广泛的实验,与当前的最新方法相比,我们在现实世界中的低光成像应用中证明了它的巨大潜力。
translated by 谷歌翻译
随着对手工卫生的需求不断增长和使用的便利性,掌上识别最近具有淡淡的发展,为人识别提供了有效的解决方案。尽管已经致力于该地区的许多努力,但仍然不确定无接触棕榈污染的辨别能力,特别是对于大规模数据集。为了解决问题,在本文中,我们构建了一个大型无尺寸的棕榈纹数据集,其中包含了来自1167人的2334个棕榈手机。为了我们的最佳知识,它是有史以来最大的非接触式手掌形象基准,而是关于个人和棕榈树的数量收集。此外,我们提出了一个名为3DCPN(3D卷积棕榈识别网络)的无棕榈识别的新型深度学习框架,它利用3D卷积来动态地集成多个Gabor功能。在3DCPN中,嵌入到第一层中的新颖变体以增强曲线特征提取。通过精心设计的集合方案,然后将低级别的3D功能卷积以提取高级功能。最后在顶部,我们设置了基于地区的损失功能,以加强全局和本地描述符的辨别能力。为了展示我们方法的优越性,在我们的数据集和其他流行数据库同济和IITD上进行了广泛的实验,其中结果显示了所提出的3DCPN实现最先进的或可比性的性能。
translated by 谷歌翻译
确实,卷积神经网络(CNN)更合适。然而,固定内核大小使传统的CNN太具体,既不灵活也不有利于特征学习,从而影响分类准确性。不同内核大小网络的卷积可以通过捕获更多辨别和相关信息来克服这个问题。鉴于此,所提出的解决方案旨在将3D和2D成立网的核心思想与促进混合方案中的HSIC CNN性能提升。生成的\ Textit {注意融合混合网络}(AFNET)基于三个关注融合的并行混合子网,每个块中的不同内核使用高级功能,以增强最终的地面图。简而言之,AFNET能够选择性地过滤滤除对分类至关重要的辨别特征。与最先进的模型相比,HSI数据集的几次测试为AFNET提供了竞争力的结果。拟议的管道实现,实际上,印度松树的总体准确性为97 \%,博茨瓦纳100 \%,帕尔茨大学,帕维亚中心和萨利纳斯数据集的99 \%。
translated by 谷歌翻译
人行道表面数据的获取和评估在路面条件评估中起着至关重要的作用。在本文中,提出了一个称为RHA-NET的自动路面裂纹分割的有效端到端网络,以提高路面裂纹分割精度。 RHA-NET是通过将残留块(重阻)和混合注意块集成到编码器架构结构中来构建的。这些重组用于提高RHA-NET提取高级抽象特征的能力。混合注意块旨在融合低级功能和高级功能,以帮助模型专注于正确的频道和裂纹区域,从而提高RHA-NET的功能表现能力。构建并用于训练和评估所提出的模型的图像数据集,其中包含由自设计的移动机器人收集的789个路面裂纹图像。与其他最先进的网络相比,所提出的模型在全面的消融研究中验证了添加残留块和混合注意机制的功能。此外,通过引入深度可分离卷积生成的模型的轻加权版本可以更好地实现性能和更快的处理速度,而U-NET参数数量的1/30。开发的系统可以在嵌入式设备Jetson TX2(25 fps)上实时划分路面裂纹。实时实验拍摄的视频将在https://youtu.be/3xiogk0fig4上发布。
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
现代车辆配备各种驾驶员辅助系统,包括自动车道保持,这防止了无意的车道偏离。传统车道检测方法采用了手工制作或基于深度的学习功能,然后使用基于帧的RGB摄像机进行通道提取的后处理技术。用于车道检测任务的帧的RGB摄像机的利用易于照明变化,太阳眩光和运动模糊,这限制了车道检测方法的性能。在自主驾驶中的感知堆栈中结合了一个事件摄像机,用于自动驾驶的感知堆栈是用于减轻基于帧的RGB摄像机遇到的挑战的最有希望的解决方案之一。这项工作的主要贡献是设计车道标记检测模型,它采用动态视觉传感器。本文探讨了使用事件摄像机通过设计卷积编码器后跟注意引导的解码器的新颖性应用了车道标记检测。编码特征的空间分辨率由致密的区域空间金字塔池(ASPP)块保持。解码器中的添加剂注意机制可提高促进车道本地化的高维输入编码特征的性能,并缓解后处理计算。使用DVS数据集进行通道提取(DET)的DVS数据集进行评估所提出的工作的功效。实验结果表明,多人和二进制车道标记检测任务中的5.54 \%$ 5.54 \%$ 5.54 \%$ 5.03 \%$ 5.03 \%$ 5.03。此外,在建议方法的联盟($ iou $)分数上的交叉点将超越最佳最先进的方法,分别以6.50 \%$ 6.50 \%$ 6.5.37 \%$ 9.37 \%$ 。
translated by 谷歌翻译
Social media and messaging apps have become major communication platforms. Multimedia contents promote improved user engagement and have thus become a very important communication tool. However, fake news and manipulated content can easily go viral, so, being able to verify the source of videos and images as well as to distinguish between native and downloaded content becomes essential. Most of the work performed so far on social media provenance has concentrated on images; in this paper, we propose a CNN architecture that analyzes video content to trace videos back to their social network of origin. The experiments demonstrate that stating platform provenance is possible for videos as well as images with very good accuracy.
translated by 谷歌翻译
基于传感器的相机识别(SCI)方法的性能严重依赖于估计光响应非均匀性(PRNU)的去噪滤波器。鉴于各种对提高提取的PRNU质量的尝试,它仍然存在于低分辨率图像和高计算需求中的不令人满意的性能。利用PRNU估计和图像去噪的相似性,利用了基于PRNU提取的卷积神经网络(CNN)的最新成就。本文在公共“德累斯顿图像数据库”上对SCI性能进行了对比较评估。我们的研究结果是两倍。从一个方面,来自图像内容的PRNU提取和图像去噪分开噪声。因此,如果仔细培训,SCI可以从最近的CNN Denoisers受益。从另一方面,PRNU提取和图像去噪的目标和场景是不同的,因为一个优化噪声质量和另一个优化图像质量。当CNN Denoisers用于PRNU估计时,需要精心定制的培训。理论上和实际评估培训数据准备和损失功能设计的替代策略。我们指出,用图像 - PRNU对喂养CNN,并以基于相关的损耗函数训练它们导致最好的PRNU估计性能。为了便于对SCI的进一步研究,我们还提出了一种最小损失相机指纹量化方案,我们使用该量化方案将指纹保存为PNG格式的图像文件。此外,我们从“德累斯顿图像数据库”公开可用的相机的量化指纹。
translated by 谷歌翻译
由于攻击材料的多样性,指纹识别系统(AFRSS)容易受到恶意攻击的影响。为AFRSS的安全性和可靠性提出有效的指纹介绍攻击检测(PAD)方法是非常重要的。然而,当前焊盘方法通常在新攻击材料或传感器设置下具有差的鲁棒性。因此,本文通过考虑处理先前作品中忽略的冗余“噪声”信息,提出了一种新的通道 - 方向特征去噪焊盘(CFD-PAD)方法。所提出的方法通过加权每个信道的重要性并找到这些鉴别性信道和“噪声”通道来学习指纹图像的重要特征。然后,在特征图中抑制了“噪声”通道的传播以减少干扰。具体地,设计了PA-Adaption损耗来限制特征分布,以使实时指纹的特征分布更具聚合和欺骗指纹更多的分散。我们在Livdet 2017上评估的实验结果表明,当假检出率等于1.0%(TDR @FDR = 1%)时,我们所提出的CFD-PAD可以达到2.53%的ace和93.83%的真实检测率,并且优于基于最佳的单一模型在ACE(2.53%与4.56%)和TDR @FDR方面的方法明显显着(93.83%,93.83%\%),这证明了该方法的有效性。虽然我们已经实现了与最先进的基于多模型的方法相比的可比结果,但是通过我们的方法仍然可以实现TDR @ FDR增加到91.19%的1%至93.83%。此外,与基于多模型的多模型的方法相比,我们的模型更简单,更轻,更高效,更高效地实现了74.76%的耗时减少。代码将公开。
translated by 谷歌翻译
图像取证中的一项常见任务是检测剪接图像,其中多个源图像组成一个输出图像。大多数当前最佳性能的剪接探测器都利用高频伪像。但是,在图像受到强大的压缩后,大多数高频伪像不再可用。在这项工作中,我们探索了一种剪接检测的替代方法,该方法可能更适合于野外图像,但要受到强烈的压缩和下采样的影响。我们的建议是建模图像的颜色形成。颜色的形成很大程度上取决于场景对象的规模的变化,因此依赖于高频伪像。我们学到了一个深度度量空间,一方面对照明颜色和摄像机的白点估计敏感,但另一方面对物体颜色的变化不敏感。嵌入空间中的大距离表明两个图像区域源于不同的场景或不同的相机。在我们的评估中,我们表明,所提出的嵌入空间的表现优于受到强烈压缩和下采样的图像的最新状态。我们在另外两个实验中确认了度量空间的双重性质,即既表征采集摄像头和场景发光颜色。因此,这项工作属于基于物理和统计取证的交集,双方都受益。
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译
在视觉检查形式中对纹理表面进行工业检查的最新进展使这种检查成为可能,以实现高效,灵活的制造系统。我们提出了一个无监督的特征内存重排网络(FMR-NET),以同时准确检测各种纹理缺陷。与主流方法一致,我们采用了背景重建的概念。但是,我们创新地利用人工合成缺陷来使模型识别异常,而传统智慧仅依赖于无缺陷的样本。首先,我们采用一个编码模块来获得纹理表面的多尺度特征。随后,提出了一个基于对比的基于学习的内存特征模块(CMFM)来获得判别性表示,并在潜在空间中构建一个正常的特征记忆库,可以用作补丁级别的缺陷和快速异常得分。接下来,提出了一个新型的全球特征重排模块(GFRM),以进一步抑制残余缺陷的重建。最后,一个解码模块利用还原的功能来重建正常的纹理背景。此外,为了提高检查性能,还利用了两阶段的训练策略进行准确的缺陷恢复改进,并且我们利用一种多模式检查方法来实现噪声刺激性缺陷定位。我们通过广泛的实验来验证我们的方法,并通过多级检测方法在协作边缘进行实用的部署 - 云云智能制造方案,表明FMR-NET具有先进的检查准确性,并显示出巨大的使用潜力在启用边缘计算的智能行业中。
translated by 谷歌翻译
在弱光环境下,手持式摄影在长时间的曝光设置下遭受了严重的相机震动。尽管现有的Deblurry算法在暴露良好的模糊图像上表现出了令人鼓舞的性能,但它们仍然无法应对低光快照。在实用的低光脱毛中,复杂的噪声和饱和区是两个主导挑战。在这项工作中,我们提出了一种称为图像的新型非盲脱毛方法,并具有特征空间Wiener Deonervolution网络(Infwide),以系统地解决这些问题。在算法设计方面,Infwide提出了一个两分支的架构,该体系结构明确消除了噪声并幻觉,使图像空间中的饱和区域抑制了特征空间中的响起文物,并将两个互补输出与一个微妙的多尺度融合网络集成在一起高质量的夜间照片浮雕。为了进行有效的网络培训,我们设计了一组损失功能,集成了前向成像模型和向后重建,以形成近环的正则化,以确保深神经网络的良好收敛性。此外,为了优化Infwide在实际弱光条件下的适用性,采用基于物理过程的低光噪声模型来合成现实的嘈杂夜间照片进行模型训练。利用传统的Wiener Deonervolution算法的身体驱动的特征并引起了深层神经网络的表示能力,Infwide可以恢复细节,同时抑制在脱毛期间的不愉快的人工制品。关于合成数据和实际数据的广泛实验证明了所提出的方法的出色性能。
translated by 谷歌翻译
在本文中,我们提出了一种用于图像剪接检测的新型社会启发卷积神经网络(CNN)深度学习模型。基于从检测到粗略拼接图像区域的前提是可以改善视觉上不可察觉的剪接图像锻炼的检测,所提出的模型称为MissMarple,是涉及特征转移学习的双CNN网络。通过培训和测试所提出的模型,使用哥伦比亚剪接,WildWeb,DSO1和拟议数据集的培训和测试所提出的模型,标题为Abhas,由现实的剪接锻炼组成,揭示了现有深度学习模型的检测精度的提高。
translated by 谷歌翻译
近年来,机器人社区已经广泛检查了关于同时定位和映射应用范围内的地点识别任务的方法。这篇文章提出了一种基于外观的循环闭合检测管道,命名为“fild ++”(快速和增量环闭合检测) .First,系统由连续图像馈送,并且通过通过单个卷积神经网络通过两次,通过单个卷积神经网络来提取全局和局部深度特征。灵活,分级导航的小世界图逐步构建表示机器人遍历路径的可视数据库基于计算的全局特征。最后,每个时间步骤抓取查询映像,被设置为在遍历的路线上检索类似的位置。遵循的图像到图像配对,它利用本地特征来评估空间信息。因此,在拟议的文章中,我们向全球和本地特征提取提出了一个网络与我们之前的一个网络工作(FILD),而在生成的深度本地特征上采用了彻底搜索验证过程,避免利用哈希代码。关于11个公共数据集的详尽实验表现出系统的高性能(实现其中八个的最高召回得分)和低执行时间(在新学院平均22.05毫秒,这是与其他国家相比包含52480图像的最大版本) - 最艺术方法。
translated by 谷歌翻译
Face forgery detection plays an important role in personal privacy and social security. With the development of adversarial generative models, high-quality forgery images become more and more indistinguishable from real to humans. Existing methods always regard as forgery detection task as the common binary or multi-label classification, and ignore exploring diverse multi-modality forgery image types, e.g. visible light spectrum and near-infrared scenarios. In this paper, we propose a novel Hierarchical Forgery Classifier for Multi-modality Face Forgery Detection (HFC-MFFD), which could effectively learn robust patches-based hybrid domain representation to enhance forgery authentication in multiple-modality scenarios. The local spatial hybrid domain feature module is designed to explore strong discriminative forgery clues both in the image and frequency domain in local distinct face regions. Furthermore, the specific hierarchical face forgery classifier is proposed to alleviate the class imbalance problem and further boost detection performance. Experimental results on representative multi-modality face forgery datasets demonstrate the superior performance of the proposed HFC-MFFD compared with state-of-the-art algorithms. The source code and models are publicly available at https://github.com/EdWhites/HFC-MFFD.
translated by 谷歌翻译