在本文中,我们建议通过多样式多模态机制(2M)来构建时尚的图像标题模型。我们证明,使用2M,我们可以构建有效的时尚标题器,并且通过识别错误示例的错误输入功能,模型产生的多引用也可以支持解释模型。我们展示了这款2M机制如何用于构建时尚的标题模型,并展示这些模型如何用于提供模型中可能错误的解释。
translated by 谷歌翻译
在本文中,我们构建了两个自动评估度量,用于评估机器生成的标题和地面真理体型中的关联:overtyle和风格德。
translated by 谷歌翻译
连接视觉和语言在生成智能中起着重要作用。因此,已经致力于图像标题的大型研究工作,即用句法和语义有意义的句子描述图像。从2015年开始,该任务通常通过由Visual Encoder组成的管道和文本生成的语言模型来解决任务。在这些年来,两种组件通过对象区域,属性,介绍多模态连接,完全关注方法和伯特早期融合策略的利用而显着发展。但是,无论令人印象深刻的结果,图像标题的研究还没有达到结论性答案。这项工作旨在提供图像标题方法的全面概述,从视觉编码和文本生成到培训策略,数据集和评估度量。在这方面,我们量化地比较了许多相关的最先进的方法来确定架构和培训策略中最有影响力的技术创新。此外,讨论了问题的许多变体及其开放挑战。这项工作的最终目标是作为理解现有文献的工具,并突出显示计算机视觉和自然语言处理的研究领域的未来方向可以找到最佳的协同作用。
translated by 谷歌翻译
自动在自然语言中自动生成图像的描述称为图像字幕。这是一个积极的研究主题,位于人工智能,计算机视觉和自然语言处理中两个主要领域的交集。图像字幕是图像理解中的重要挑战之一,因为它不仅需要识别图像中的显着对象,还需要其属性及其相互作用的方式。然后,系统必须生成句法和语义上正确的标题,该标题描述了自然语言的图像内容。鉴于深度学习模型的重大进展及其有效编码大量图像并生成正确句子的能力,最近已经提出了几种基于神经的字幕方法,每种方法都试图达到更好的准确性和标题质量。本文介绍了一个基于编码器的图像字幕系统,其中编码器使用以RESNET-101作为骨干为骨干来提取图像中每个区域的空间和全局特征。此阶段之后是一个精致的模型,该模型使用注意力进行注意的机制来提取目标图像对象的视觉特征,然后确定其相互作用。解码器由一个基于注意力的复发模块和一个反思性注意模块组成,该模块会协作地将注意力应用于视觉和文本特征,以增强解码器对长期顺序依赖性建模的能力。在两个基准数据集(MSCOCO和FLICKR30K)上进行的广泛实验显示了提出的方法和生成的字幕的高质量。
translated by 谷歌翻译
图像标题是自动生成句子的任务,以最好的方式生成描述输入图像。最近用于自动生成图像标题的最成功的技术最近使用了细心的深度学习模型。设计了深入学习模型的设计方式有变化。在本调查中,我们为图像标题的细心深度学习模型提供了相关的文献述评。而不是对深度图像标题模型的所有先前工作进行全面审查,我们解释了用于深度学习模型中的图像标题任务的各种类型的注意机制。用于图像标题的最成功的深度学习模型遵循编码器解码器架构,尽管这些模型采用注意机制的方式存在差异。通过分析图像标题的不同细节深层模型的性能结果,我们的目标是在图像标题中找到深度模型中最成功的注意机制。柔软的关注,自下而上的关注和多主题是一种广泛应用于图像标题的最先进的深度学习模型的关注机构的类型。在当前时,最佳结果是从多针关注的变体实现的,以自下而上的关注。
translated by 谷歌翻译
人类利用先验知识来描述图像,并能够使其解释适应特定的上下文信息,即使在上下文信息和图像不匹配时,也可以在发明合理的解释的范围内。在这项工作中,我们提出了通过整合上下文知识来字幕Wikipedia图像的新颖任务。具体而言,我们制作的模型共同推理了Wikipedia文章,Wikimedia图像及其相关描述以产生上下文化的标题。特别是,可以使用类似的Wikimedia图像来说明不同的文章,并且所产生的标题需要适应特定的上下文,因此使我们能够探索模型的限制以调整标题为不同的上下文信息。该领域中的一个特殊挑战性的任务是处理量不多的单词和命名实体。为了解决这个问题,我们提出了一个预训练目标,掩盖了命名实体建模(MNEM),并表明与基线模型相比,此借口任务可以改善。此外,我们验证了Wikipedia中使用MNEM目标预先训练的模型可以很好地推广到新闻字幕数据集。此外,我们根据字幕任务的难度定义了两种不同的测试拆分。我们提供有关每种方式的作用和重要性的见解,并突出我们模型的局限性。接受时,代码,模型和数据拆分可公开可用。
translated by 谷歌翻译
图像字幕是当前的研究任务,用于使用场景中的对象及其关系来描述图像内容。为了应对这项任务,使用了两个重要的研究领域,人为的视觉和自然语言处理。在图像字幕中,就像在任何计算智能任务中一样,性能指标对于知道方法的性能(或坏)至关重要。近年来,已经观察到,基于n-gram的经典指标不足以捕获语义和关键含义来描述图像中的内容。为了衡量或不进行最新指标的集合,在本手稿中,我们对使用众所周知的COCO数据集进行了对几种图像字幕指标的评估以及它们之间的比较。为此,我们设计了两种情况。 1)一组人工构建字幕,以及2)比较某些最先进的图像字幕方法的比较。我们试图回答问题:当前的指标是否有助于制作高质量的标题?实际指标如何相互比较?指标真正测量什么?
translated by 谷歌翻译
观察一组图像及其相应的段落限制,一个具有挑战性的任务是学习如何生成语义连贯的段落来描述图像的视觉内容。受到将语义主题纳入此任务的最新成功的启发,本文开发了插件的层次结构引导图像段落生成框架,该框架将视觉提取器与深层主题模型相结合,以指导语言模型的学习。为了捕获图像和文本在多个抽象层面上的相关性并从图像中学习语义主题,我们设计了一个变异推理网络,以构建从图像功能到文本字幕的映射。为了指导段落的生成,学习的层次主题和视觉特征被整合到语言模型中,包括长期的短期记忆(LSTM)和变压器,并共同优化。公共数据集上的实验表明,在标准评估指标方面具有许多最先进的方法竞争的拟议模型可用于提炼可解释的多层语义主题并产生多样的和相干的标题。我们在https://github.com/dandanguo1993/vtcm aseal-image-image-paragraph-caption.git上发布代码
translated by 谷歌翻译
图像字幕模型旨在通过提供输入图像的自然语言描述来连接视觉和语言。在过去的几年中,通过学习参数模型并提出视觉特征提取的进步或建模更好的多模式连接来解决该任务。在本文中,我们研究了使用KNN记忆的图像字幕方法的开发,可以从外部语料库中检索知识以帮助生成过程。我们的架构结合了一个基于视觉相似性,可区分编码器和KNN-agn-agn-agement注意层的知识检索器,以根据过去的上下文和从外部内存检索的文本进行预测令牌。在可可数据集上进行的实验结果表明,采用明确的外部记忆可以帮助生成过程并提高标题质量。我们的工作开辟了新的途径,以更大规模改善图像字幕模型。
translated by 谷歌翻译
描述使用自然语言的图像被广泛称为图像标题,这是由于计算机视觉和自然语言生成技术的发展而达成了一致的进展。虽然传统的标题模型基于流行度量的高精度,即BLEU,苹果酒和香料,探索了标题与其他类似图像中的标题的能力。为了产生独特的标题,一些先驱采用对比学习或重新加权地面真理标题,其侧重于一个输入图像。然而,忽略了类似图像组中对象之间的关系(例如,相同专辑中的项目或属性或细粒度事件中的物品)。在本文中,我们使用基于组的独特标题模型(Gdiscap)来提高图像标题的独特性,其将每个图像与一个类似的组中的其他图像进行比较,并突出显示每个图像的唯一性。特别是,我们提出了一种基于组的内存注意力(GMA)模块,其存储在图像组中是唯一的对象特征(即,与其他图像中的对象的低相似性)。生成字幕时突出显示这些唯一的对象功能,从而产生更有独特的标题。此外,选择地面标题中的独特单词来监督语言解码器和GMA。最后,我们提出了一种新的评估度量,独特的单词率(Diswordrate)来测量标题的独特性。定量结果表明,该方法显着提高了几种基线模型的独特性,并实现了精度和独特性的最先进的性能。用户学习的结果与定量评估一致,并证明了新的公制Diswordrate的合理性。
translated by 谷歌翻译
大多数当前图像标题模型通常从左到右生成标题。这种单向财产使它们只能利用过去的背景但不是未来的背景。尽管最近的基于改进的模型可以通过基于第一阶段的预检索或预先生成的标题在第二阶段生成新的标题来利用过去和未来的上下文,但是这些模型的解码器通常由两个网络组成〜(即第一阶段中的猎犬或标题器和第二阶段的炼油厂),其只能顺序地执行。在本文中,我们引入了一种用于图像标题的紧凑双向变压器模型,其可以在解码器并行执行解码器时隐式地和明确地利用双向上下文。具体地,通过将​​左右(L2R)和向右(R2L)紧密地耦合到单个紧凑型〜(即隐式)和可选地允许两个流的相互作用(即明确)的相互作用(即明确)来实现来实现。最终标题以句子级集合方式从L2R或R2L流中选择。我们对MSCOCO基准进行广泛的消融研究,并找到紧凑的架构,它用作隐式利用双向上下文的正则化,以及句子级集合比显式交互机制扮演更重要的角色。通过无缝地与单词级集合组合,句子级集合的效果进一步放大。我们进一步将传统的单流自我关键培训扩展到此架构下的双流程版本,并与非视语 - 预先预订模型相比,实现新的最先进导致。源代码可用于{\ color {magenta} \ url {https://github.com/yuanezhou/cbtrans}}。
translated by 谷歌翻译
新颖的对象字幕(NOC)旨在描述包含对象的图像,而无需在训练过程中观察其地面真相标题。由于缺乏字幕注释,无法通过序列到序列训练或苹果酒优化直接优化字幕模型。结果,我们提出了启用释义(P2C),这是一个针对NOC的两阶段学习框架,它将通过释义通过释义来优化输出字幕。使用P2C,字幕模型首先从仅在文本语料库中预先训练的语言模型中学习释义,从而扩展了Bank一词以提高语言流利度。为了进一步实施足够描述输入图像的视觉内容的输出字幕,我们对引入的忠诚度和充分性目标进行字幕模型执行自我贴形。由于在训练过程中没有任何地面真相标题可用于新颖的对象图像,因此我们的P2C利用交叉模式(图像文本)关联模块可以确保可以正确保留上述字幕特征。在实验中,我们不仅表明我们的P2C在NOCAPS和COCO字幕数据集上实现了最先进的性能,而且还通过替换NOC的语言和跨模式关联模型来验证学习框架的有效性和灵活性。实施详细信息和代码可在补充材料中找到。
translated by 谷歌翻译
在传统的视觉问题(VQG)中,大多数图像具有多个概念(例如,对象和类别),可以生成问题,但培训模型以模仿培训数据中给出的任意选择概念。这使得训练困难并且还造成评估问题 - 对于大多数图像而言,存在多个有效问题,但人类参考资料只捕获一个或多个。我们呈现指导视觉问题 - VQG的变体,它根据对问题类型和应该探索的对象的期望来解决基于分类信息的问题生成器。我们提出了两个变体:(i)明确指导的模型,使演员(人机或自动化)能够选择哪些对象和类别来生成问题; (ii)基于离散潜在变量的基于离散潜变量,了解了一个隐式导游的模型,该模型将了解条件的哪些对象和类别。在答案类别增强VQA数据集上评估所提出的模型,我们的定量结果显示了对现有技术的大大改进(超过9bleu-4增加)。人类评估验证指导有助于生成语法相干的问题,并与给定的图像和对象相关。
translated by 谷歌翻译
We present ViLBERT (short for Vision-and-Language BERT), a model for learning task-agnostic joint representations of image content and natural language. We extend the popular BERT architecture to a multi-modal two-stream model, processing both visual and textual inputs in separate streams that interact through co-attentional transformer layers. We pretrain our model through two proxy tasks on the large, automatically collected Conceptual Captions dataset and then transfer it to multiple established vision-and-language tasks -visual question answering, visual commonsense reasoning, referring expressions, and caption-based image retrieval -by making only minor additions to the base architecture. We observe significant improvements across tasks compared to existing task-specific modelsachieving state-of-the-art on all four tasks. Our work represents a shift away from learning groundings between vision and language only as part of task training and towards treating visual grounding as a pretrainable and transferable capability.Preprint. Under review.
translated by 谷歌翻译
在序列到序列学习中,例如,自然语言生成,解码器依赖于注意机制,以有效地从编码器中提取信息。虽然常见的做法是从最后一个编码器层绘制信息,但最近的工作已经提出用于使用来自不同编码器层的表示,以进行多样化的信息。尽管如此,解码器仍然仅获得源序列的单个视图,这可能导致由于层级绕过问题而导致编码器层堆栈的训练不足。在这项工作中,我们提出了层次的多视图解码,其中对于每个解码器层以及来自最后一个编码器层的表示,它作为全局视图,来自其他编码器层的那些是用于立体视图的源序列。系统实验和分析表明,我们成功地解决了层次结构绕过问题,需要几乎可忽略的参数增加,并大大提高了五种不同任务的深度表示的序列到序列学习的性能,即机器翻译,抽象总结,图像标题,视频字幕和医疗报告生成。特别是,我们的方法在八个基准数据集中实现了新的最先进的结果,包括低资源机器转换数据集和两个低资源医疗报告生成数据集。
translated by 谷歌翻译
视觉模型可以评估图像中的视觉上下文并生成描述性文本。尽管生成的文本可能是准确且句法正确的,但通常过于笼统。为了解决这个问题,最近的工作使用光学特征识别来补充视觉信息,并从图像中提取的文本进行补充。在这项工作中,我们认为,视觉模型可以受益于可以从图像中提取但不使用当前模型使用的其他信息。我们修改了以前的多模式框架,以接受来自任意数量的辅助分类器的相关信息。特别是,我们将重点放在人的名字作为附加令牌上,并创建一个新颖的图像捕获数据集,以促进用人名称的字幕。标题(PAC)中的数据集,政客和运动员包括背景下知名人士的字幕图像。通过使用此数据集对预处理的模型进行微调,我们演示了一个模型,该模型可以自然地将面部识别令牌纳入生成的文本中,通过培训有限的数据。对于PAC数据集,我们提供有关集合和基线基准分数的讨论。
translated by 谷歌翻译
图像标题模型通常缺乏考虑用户兴趣的能力,通常默认为试图平衡可读性,信息性和信息过载的全局描述。另一方面,VQA模型通常缺乏提供长描述性答案的能力,同时期望文本问题非常精确。我们介绍一种控制图像标题应该专注于的概念的方法,使用称为指导文本的额外输入,该概念是指图像中的可接近或未放置的概念。我们的模型包括一个基于变换器的多模式编码器,它使用引导文本与全局和对象级别图像功能一起导出用于生成引导标题的早期融合表示。虽然在视觉基因组数据上培训的模型时,在使用自动对象标签的引导时具有适应良好的域的域中优势,但我们发现在概念标题上培训的引导标题模型概括为域外图像和引导文本。我们的人为评估结果表明,尝试野外引导的图像标题需要访问大,不受限制的域训练数据集,并且增加的样式分集(即使不增加唯一令牌的数量)是提高性能的关键因素。
translated by 谷歌翻译
密集的视频字幕(DVC)旨在生成多句子描述,以阐明视频中的多个事件,这是具有挑战性,需要的视觉一致性,疑惑一致性和语言多样性。现有方法主要生成各个视频段的标题,缺乏适应全局视觉上下文和快速发展的视觉内容和文本描述之间的渐进对齐,这导致冗余和拼接描述。在本文中,我们介绍了信息流的概念,以模拟跨视频序列和标题的渐进信息。通过设计跨模型信息流对准机制,捕获和对齐的视觉和文本信息流,其在事件/主题演化上以更丰富的上下文和动态赋予标题处理。基于跨模型信息流对准模块,我们进一步提出了DVCFlow框架,它由全球本地视觉编码器组成,用于捕获每个视频段的全局功能和本地特征,以及用于产生标题的预先培训的标题生成器。对流行的ActivityNet标题和Youcookii数据集的广泛实验表明,我们的方法显着优于竞争基础,并根据主题和客观测试产生更多人类文本。
translated by 谷歌翻译
图像字幕模型通常是根据人体注释的地面真实字幕训练的,该字幕可能会产生准确但通用的字幕。为了提高字幕模型的独特性,我们首先提出了一系列使用大规模视觉语言预训练模型剪辑来评估标题的独特性。然后,我们提出了一种简单有效的训练策略,该策略通过在相似图像组中进行比较来训练模型。我们对各种现有模型进行了广泛的实验,以证明我们的策略的广泛适用性以及基于公制的结果与人类评估的一致性。通过将最佳模型的性能与现有的最新模型进行比较,我们声称我们的模型实现了针对独特性目标的新最先进的。
translated by 谷歌翻译
Despite the remarkable progress of image captioning, existing captioners typically lack the controllable capability to generate desired image captions, e.g., describing the image in a rough or detailed manner, in a factual or emotional view, etc. In this paper, we show that a unified model is qualified to perform well in diverse domains and freely switch among multiple styles. Such a controllable capability is achieved by embedding the prompt learning into the image captioning framework. To be specific, we design a set of prompts to fine-tune the pre-trained image captioner. These prompts allow the model to absorb stylized data from different domains for joint training, without performance degradation in each domain. Furthermore, we optimize the prompts with learnable vectors in the continuous word embedding space, avoiding the heuristic prompt engineering and meanwhile exhibiting superior performance. In the inference stage, our model is able to generate desired stylized captions by choosing the corresponding prompts. Extensive experiments verify the controllable capability of the proposed method. Notably, we achieve outstanding performance on two diverse image captioning benchmarks including COCO Karpathy split and TextCaps using a unified model.
translated by 谷歌翻译