我们研究联合的上下文线性匪徒,其中$ m $代理相互合作,在中央服务器的帮助下解决全球上下文线性匪徒问题。我们考虑了异步设置,所有代理商都独立工作,一个代理和服务器之间的通信不会触发其他代理的通信。我们提出了一种基于乐观原理的简单算法\ texttt {fedlinucb}。我们证明\ texttt {fedlinucb}的遗憾是由$ \ tilde {o}(d \ sqrt {\ sum_ {m = 1}^m t_m})$界定的,通信复杂性是$ \ tilde {o}(o}(o}(o}(o}(o))dm^2)$,其中$ d $是上下文向量的尺寸,$ t_m $是与环境的交互总数,$ m $ -th代理。据我们所知,这是第一种可证明有效的算法,它允许联合上下文线性匪徒完全异步通信,同时获得与单一代理设置相同的遗憾保证。
translated by 谷歌翻译
我们研究了带有未知上下文的分布式随机多臂上下文匪徒的问题,其中M代理商在中央服务器的协调下合作选择最佳动作,以最大程度地减少遗憾。在我们的模型中,对手选择在可能的上下文集上的分布,而代理只观察到上下文分布,而确切的上下文是代理人未知的。例如,当上下文本身是嘈杂的测量或基于天气预报或股票市场预测中的预测机制时,就会出现这种情况。我们的目标是开发一种分布式算法,该算法选择一系列最佳动作序列以最大程度地提高累积奖励。通过执行功能向量转换并利用UCB算法,我们提出了一种具有上下文分布的随机匪徒的UCB算法,并证明我们的算法实现了$ O(D \ sqrt {mt} log^2t log^2t)$ o的遗憾和通信范围对于线性参数化的奖励函数,分别为$ o(m^{1.5} d^3)$。我们还考虑了一种情况,代理在选择动作后会观察实际情况。对于此设置,我们提出了一种修改后的算法,该算法利用其他信息来实现更严格的遗憾。最后,我们验证了算法的性能,并使用有关合成数据和现实世界Movielens数据集的大量模拟将其与其他基线方法进行了比较。
translated by 谷歌翻译
我们在存在对抗性腐败的情况下研究线性上下文的强盗问题,在场,每回合的奖励都被对手损坏,腐败级别(即,地平线上的腐败总数)为$ c \ geq 0 $。在这种情况下,最著名的算法受到限制,因为它们要么在计算效率低下,要么需要对腐败做出强烈的假设,或者他们的遗憾至少比没有腐败的遗憾差的$ C $倍。在本文中,为了克服这些局限性,我们提出了一种基于不确定性的乐观原则的新算法。我们算法的核心是加权山脊回归,每个选择动作的重量都取决于其置信度,直到一定的阈值。 We show that for both known $C$ and unknown $C$ cases, our algorithm with proper choice of hyperparameter achieves a regret that nearly matches the lower bounds.因此,我们的算法几乎是两种情况的对数因素的最佳选择。值得注意的是,我们的算法同时对腐败和未腐败的案件($ c = 0 $)实现了近乎最理想的遗憾。
translated by 谷歌翻译
We study distributed contextual linear bandits with stochastic contexts, where $N$ agents act cooperatively to solve a linear bandit-optimization problem with $d$-dimensional features over the course of $T$ rounds. For this problem, we derive the first ever information-theoretic lower bound $\Omega(dN)$ on the communication cost of any algorithm that performs optimally in a regret minimization setup. We then propose a distributed batch elimination version of the LinUCB algorithm, DisBE-LUCB, where the agents share information among each other through a central server. We prove that the communication cost of DisBE-LUCB matches our lower bound up to logarithmic factors. In particular, for scenarios with known context distribution, the communication cost of DisBE-LUCB is only $\tilde{\mathcal{O}}(dN)$ and its regret is ${\tilde{\mathcal{O}}}(\sqrt{dNT})$, which is of the same order as that incurred by an optimal single-agent algorithm for $NT$ rounds. We also provide similar bounds for practical settings where the context distribution can only be estimated. Therefore, our proposed algorithm is nearly minimax optimal in terms of \emph{both regret and communication cost}. Finally, we propose DecBE-LUCB, a fully decentralized version of DisBE-LUCB, which operates without a central server, where agents share information with their \emph{immediate neighbors} through a carefully designed consensus procedure.
translated by 谷歌翻译
我们应对在分布式环境中学习内核上下文匪徒的沟通效率挑战。尽管最近的沟通效率分布式强盗学习取得了进步,但现有的解决方案仅限于简单的模型,例如多臂匪徒和线性匪徒,这阻碍了其实用性。在本文中,我们没有假设存在从功能到预期奖励的线性奖励映射,而是通过让代理商在复制的内核希尔伯特(RKHS)中协作搜索来考虑非线性奖励映射。由于分布式内核学习需要传输原始数据,因此引入了沟通效率的重大挑战,从而导致沟通成本增长线性W.R.T.时间范围$ t $。我们通过装备所有代理通过通用的nystr \“ {o} m嵌入,随着收集更多的数据点的收集。我们严格地证明我们的算法可以以遗憾和通信成本达到次线性率,我们可以通过适应性更新的嵌入来解决这个问题。 。
translated by 谷歌翻译
由于信息不对称,多智能经纪增强学习(Marl)问题是挑战。为了克服这一挑战,现有方法通常需要代理商之间的高度协调或沟通。我们考虑具有在应用中产生的分层信息结构的两个代理多武装匪徒(MAB)和MARKOV决策过程(MDP),我们利用不需要协调或通信的更简单和更高效的算法。在结构中,在每个步骤中,“领导者”首先选择她的行动,然后“追随者”在观察领导者的行动后,“追随者”决定他的行动。这两个代理观察了相同的奖励(以及MDP设置中的相同状态转换),这取决于其联合行动。对于强盗设置,我们提出了一种分层匪盗算法,实现了$ \ widetilde {\ mathcal {o}}(\ sqrt {abt})$和近最佳差距依赖的近乎最佳的差距遗憾$ \ mathcal {o}(\ log(t))$,其中$ a $和$ b $分别是领导者和追随者的行动数,$ t $是步数。我们进一步延伸到多个追随者的情况,并且具有深层层次结构的情况,在那里我们都获得了近乎最佳的遗憾范围。对于MDP设置,我们获得$ \ widetilde {\ mathcal {o}}(\ sqrt {h ^ 7s ^ 2abt})$后悔,其中$ h $是每集的步骤数,$ s $是数量各国,$ T $是剧集的数量。这与$ a,b $和$ t $的现有下限匹配。
translated by 谷歌翻译
我们在适应性约束下研究了强化学习(RL),线性函数近似。我们考虑两个流行的有限适应性模型:批量学习模型和稀有策略交换机模型,并提出了两个有效的在线线性马尔可夫决策过程的在线RL算法,其中转换概率和奖励函数可以表示为一些线性函数已知的特征映射。具体而言,对于批量学习模型,我们提出的LSVI-UCB-批处理算法实现了$ \ tilde o(\ sqrt {d ^ 3h ^ 3t} + dht / b)$后悔,$ d $是尺寸特征映射,$ H $是剧集长度,$ t $是交互数量,$ b $是批次数。我们的结果表明,只使用$ \ sqrt {t / dh} $批量来获得$ \ tilde o(\ sqrt {d ^ 3h ^ 3t})$后悔。对于稀有策略开关模型,我们提出的LSVI-UCB-RARESWICH算法享有$ \ TINDE O(\ SQRT {D ^ 3h ^ 3t [1 + T /(DH)] ^ {dh / b})$遗憾,这意味着$ dh \ log t $策略交换机足以获得$ \ tilde o(\ sqrt {d ^ 3h ^ 3t})$后悔。我们的算法达到与LSVI-UCB算法相同的遗憾(Jin等,2019),但具有大量较小的适应性。我们还为批量学习模式建立了较低的界限,这表明对我们遗憾的依赖于您的遗憾界限是紧张的。
translated by 谷歌翻译
我们研究了线性函数近似的强化学习(RL)。此问题的现有算法仅具有高概率遗憾和/或可能大致正确(PAC)样本复杂性保证,这不能保证对最佳政策的趋同。在本文中,为了克服现有算法的限制,我们提出了一种新的算法,称为长笛,它享有统一-PAC收敛到具有高概率的最佳政策。统一-PAC保证是文献中强化学习的最强烈保证,它可以直接意味着PAC和高概率遗憾,使我们的算法优于具有线性函数近似的所有现有算法。在我们的算法的核心,是一种新颖的最小值函数估计器和多级别分区方案,以从历史观察中选择训练样本。这两种技术都是新的和独立的兴趣。
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
上下文多臂强盗(MAB)是推荐系统中重要的顺序决策问题。一系列称为土匪(俱乐部)聚集的作品,利用了对用户的协作效果,并显着提高了建议质量。由于应用程序量表的日益增加和对隐私的关注,因此需求不断增加,以使用户数据分散并将匪徒学习推向本地服务器端。但是,现有的俱乐部算法是在中央服务器上可用的集中设置下设计的。我们专注于研究Bandit(FCLUB)问题的联合在线聚类,该问题旨在最大程度地减少遗憾,同时满足隐私和沟通的考虑。我们为群集检测设计了一种新的基于阶段的方案,并为解决此问题的合作强盗学习提供了一种新型的异步通信协议。为了保护用户的隐私,以前的差异隐私(DP)定义不是很合适,我们提出了一个在用户群集级别上起作用的新DP概念。我们提供了严格的证据,以证明我们的算法同时实现(聚类)DP,sublrinear沟通复杂性和sublrinear遗憾。最后,实验评估表明,与基准算法相比,我们的表现出色。
translated by 谷歌翻译
We consider distributed linear bandits where $M$ agents learn collaboratively to minimize the overall cumulative regret incurred by all agents. Information exchange is facilitated by a central server, and both the uplink and downlink communications are carried over channels with fixed capacity, which limits the amount of information that can be transmitted in each use of the channels. We investigate the regret-communication trade-off by (i) establishing information-theoretic lower bounds on the required communications (in terms of bits) for achieving a sublinear regret order; (ii) developing an efficient algorithm that achieves the minimum sublinear regret order offered by centralized learning using the minimum order of communications dictated by the information-theoretic lower bounds. For sparse linear bandits, we show a variant of the proposed algorithm offers better regret-communication trade-off by leveraging the sparsity of the problem.
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
我们为线性上下文匪徒提出了一种新颖的算法(\ sqrt {dt \ log t})$遗憾,其中$ d $是上下文的尺寸,$ t $是时间范围。我们提出的算法配备了一种新型估计量,其中探索通过显式随机化嵌入。根据随机化的不同,我们提出的估计器从所有武器的上下文或选定的上下文中都取得了贡献。我们为我们的估计器建立了一个自称的绑定,这使累积遗憾的新颖分解为依赖添加剂的术语而不是乘法术语。在我们的问题设置下,我们还证明了$ \ omega(\ sqrt {dt})$的新颖下限。因此,我们提出的算法的遗憾与对数因素的下限相匹配。数值实验支持理论保证,并表明我们所提出的方法的表现优于现有的线性匪徒算法。
translated by 谷歌翻译
汤普森采样(TS)是解决上下文多武装强盗问题最有效的算法之一。在本文中,我们提出了一种新的算法,称为神经汤普森采样,这适应了深度神经网络,用于勘探和剥削。在我们的算法的核心是一种新的奖励的后分布,其平均值是神经网络近似器,并且其方差建立在相应神经网络的神经切线特征上。我们证明,如果底层奖励函数是有界的,则可以保证所提出的算法来实现$ \ mathcal {o}(t ^ {1/2})$的累积遗憾,它与其他上下文强盗算法的遗憾匹配总轮数量$ t $。各种数据集中其他基准强盗算法的实验比较证实了我们的理论。
translated by 谷歌翻译
We study reinforcement learning (RL) with linear function approximation. For episodic time-inhomogeneous linear Markov decision processes (linear MDPs) whose transition dynamic can be parameterized as a linear function of a given feature mapping, we propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $\tilde O(d\sqrt{H^3K})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $K$ is the number of episodes. Our algorithm is based on a weighted linear regression scheme with a carefully designed weight, which depends on a new variance estimator that (1) directly estimates the variance of the \emph{optimal} value function, (2) monotonically decreases with respect to the number of episodes to ensure a better estimation accuracy, and (3) uses a rare-switching policy to update the value function estimator to control the complexity of the estimated value function class. Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
translated by 谷歌翻译
我们研究依靠敏感数据(例如医疗记录)的环境的顺序决策中,研究隐私的探索。特别是,我们专注于解决在线性MDP设置中受(联合)差异隐私的约束的增强学习问题(RL),在该设置中,动态和奖励均由线性函数给出。由于Luyo等人而引起的此问题的事先工作。 (2021)实现了$ o(k^{3/5})$的依赖性的遗憾率。我们提供了一种私人算法,其遗憾率提高,最佳依赖性为$ o(\ sqrt {k})$对情节数量。我们强烈遗憾保证的关键配方是策略更新时间表中的适应性,其中仅在检测到数据足够更改时才发生更新。结果,我们的算法受益于低切换成本,并且仅执行$ o(\ log(k))$更新,这大大降低了隐私噪声的量。最后,在最普遍的隐私制度中,隐私参数$ \ epsilon $是一个常数,我们的算法会造成可忽略不计的隐私成本 - 与现有的非私人遗憾界限相比,由于隐私而引起的额外遗憾在低阶中出现了术语。
translated by 谷歌翻译
合作匪徒问题越来越多地成为其在大规模决策中的应用。然而,对此问题的大多数研究专注于具有完美通信的环境,而在大多数现实世界分布式设置中,通信通常是随机网络,具有任意损坏和延迟。在本文中,我们在三个典型的真实沟通场景下研究了合作匪徒学习,即(a)通过随机时变网络的消息传递,(b)通过随机延迟的网络瞬时奖励共享(c )通过对冲损坏的奖励来传递消息,包括拜占庭式沟通。对于每个环境中的每一个,我们提出了实现竞争性能的分散算法,以及在发生的群体后悔的近乎最佳保证。此外,在具有完美通信的环境中,我们提出了一种改进的延迟更新算法,其优于各种网络拓扑的现有最先进的算法。最后,我们在集团后悔呈现紧密的网络依赖性最低限度。我们所提出的算法很简单,以实现和获得竞争性的经验性能。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
在本文中,我们仅使用部分分布式反馈来研究全球奖励最大化的问题。这个问题是由几个现实世界应用程序(例如蜂窝网络配置,动态定价和政策选择)激发的,其中中央实体采取的行动会影响有助于全球奖励的大量人群。但是,从整个人群那里收集此类奖励反馈不仅会产生高昂的成本,而且经常导致隐私问题。为了解决此问题,我们考虑了差异的私有分布式线性土匪,其中只选择了来自人群的一部分用户(称为客户)来参与学习过程,并且中央服务器通过迭代地汇总这些部分从这种部分反馈中学习了全局模型客户的本地反馈以差异化的方式。然后,我们提出了一个统一的算法学习框架,称为差异性分布式分布式消除(DP-DPE),该框架可以与流行的差异隐私(DP)模型(包括中央DP,Local DP,Local DP和Shuffle DP)自然集成。此外,我们证明DP-DPE既可以达到统一的遗憾,又实现了额定性沟通成本。有趣的是,DP-DPE也可以“免费”获得隐私保护,这是因为由于隐私保证是一个较低的加法术语。此外,作为我们技术的副产品,对于标准的差异私有线性匪徒,也可以实现“自由”隐私的相同结果。最后,我们进行模拟以证实我们的理论结果并证明DP-DPE的有效性。
translated by 谷歌翻译
本文调查了非静止线性匪徒的问题,其中未知的回归参数随着时间的推移而发展。现有的研究开发了各种算法并显示他们享受$ \ widetilde {\ mathcal {p_t ^ {1/3})$动态遗憾,其中$ t $是时间范围和$ p_t $是测量演化未知参数的波动的路径长度。在本文中,我们发现一个严肃的技术缺陷使其结果未接地,然后呈现一个FIX,它给出$ \ WidTilde {\ Mathcal {o}}(t ^ {3/4} p_t ^ {1/4} )$动态遗憾而不修改原始算法。此外,我们证明了代替使用复杂的机制,例如滑动窗口或加权罚款,简单的重启策略足以实现相同的遗憾保证。具体而言,我们设计了UCB型算法来平衡利用和探索,并定期重新启动它以处理未知参数的漂移。我们的方法享有$ \ widetilde {\ mathcal {o}}(t ^ {3/4} p_t ^ {1/4})$动态遗憾。请注意,为了实现这一界限,该算法需要Oracle知识路径长度$ P_T $。将强盗带式机制组合通过将我们的算法视为基础学习者,我们可以通过无参数方式实现相同的遗憾。实证研究还验证了我们方法的有效性。
translated by 谷歌翻译