基于英语的数据集通常可从卡格,GitHub或最近发布的论文中获得。虽然具有英语数据集的基准测试足以展示新模型和方法的性能,但研究人员需要培训和验证韩国数据集的模型,以生产技术或产品,适用于韩国处理。本文介绍了15个受欢迎的韩国NLP数据集,其中包含了由数据集启发的卷,许可证,存储库和其他研究结果等详细信息。此外,我提供了具有数据集的样本或统计数据的高分辨率指令。数据集的主要特征在单个表中呈现,以便为研究人员提供快速摘要。
translated by 谷歌翻译
We present NusaCrowd, a collaborative initiative to collect and unite existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have has brought together 137 datasets and 117 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their effectiveness has been demonstrated in multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and its local languages. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and its local languages. Our work is intended to help advance natural language processing research in under-represented languages.
translated by 谷歌翻译
本文介绍了对土耳其语可用于的语料库和词汇资源的全面调查。我们审查了广泛的资源,重点关注公开可用的资源。除了提供有关可用语言资源的信息外,我们还提供了一组建议,并确定可用于在土耳其语言学和自然语言处理中进行研究和建筑应用的数据中的差距。
translated by 谷歌翻译
有关应答数据集和模型的研究在研究界中获得了很多关注。其中许多人释放了自己的问题应答数据集以及模型。我们在该研究领域看到了巨大的进展。本调查的目的是识别,总结和分析许多研究人员释放的现有数据集,尤其是在非英语数据集以及研究代码和评估指标等资源中。在本文中,我们审查了问题应答数据集,这些数据集可以以法语,德语,日语,中文,阿拉伯语,俄语以及多语言和交叉的问答数据集进行英语。
translated by 谷歌翻译
While the NLP community is generally aware of resource disparities among languages, we lack research that quantifies the extent and types of such disparity. Prior surveys estimating the availability of resources based on the number of datasets can be misleading as dataset quality varies: many datasets are automatically induced or translated from English data. To provide a more comprehensive picture of language resources, we examine the characteristics of 156 publicly available NLP datasets. We manually annotate how they are created, including input text and label sources and tools used to build them, and what they study, tasks they address and motivations for their creation. After quantifying the qualitative NLP resource gap across languages, we discuss how to improve data collection in low-resource languages. We survey language-proficient NLP researchers and crowd workers per language, finding that their estimated availability correlates with dataset availability. Through crowdsourcing experiments, we identify strategies for collecting high-quality multilingual data on the Mechanical Turk platform. We conclude by making macro and micro-level suggestions to the NLP community and individual researchers for future multilingual data development.
translated by 谷歌翻译
Code-Switching, a common phenomenon in written text and conversation, has been studied over decades by the natural language processing (NLP) research community. Initially, code-switching is intensively explored by leveraging linguistic theories and, currently, more machine-learning oriented approaches to develop models. We introduce a comprehensive systematic survey on code-switching research in natural language processing to understand the progress of the past decades and conceptualize the challenges and tasks on the code-switching topic. Finally, we summarize the trends and findings and conclude with a discussion for future direction and open questions for further investigation.
translated by 谷歌翻译
预先训练的上下文化文本表示模型学习自然语言的有效表示,以使IT机器可以理解。在注意机制的突破之后,已经提出了新一代预磨模的模型,以便自变压器引入以来实现了良好的性能。来自变压器(BERT)的双向编码器表示已成为语言理解的最先进的模型。尽管取得了成功,但大多数可用的型号已经在印度欧洲语言中培训,但是对代表性的语言和方言的类似研究仍然稀疏。在本文中,我们调查了培训基于单语言变换器的语言模型的可行性,以获得代表语言的特定重点是突尼斯方言。我们评估了我们的语言模型对情感分析任务,方言识别任务和阅读理解问答任务。我们表明使用嘈杂的Web爬网数据而不是结构化数据(维基百科,文章等)更方便这些非标准化语言。此外,结果表明,相对小的Web爬网数据集导致与使用较大数据集获得的那些表现相同的性能。最后,我们在所有三个下游任务中达到或改善了最先进的Tunbert模型。我们释放出Tunbert净化模型和用于微调的数据集。
translated by 谷歌翻译
加泰罗坦语言理解基准(Club)包括代表不同NLU任务的各种数据集,以便在一般语言理解评估(胶水)示例之后,可以准确评估语言模型。它是Aina和Plantl的一部分,两项公共资金举措,以赋予人工智能时代的加泰罗尼亚语言。
translated by 谷歌翻译
自然语言处理(NLP)是一个人工智能领域,它应用信息技术来处理人类语言,在一定程度上理解并在各种应用中使用它。在过去的几年中,该领域已经迅速发展,现在采用了深层神经网络的现代变体来从大型文本语料库中提取相关模式。这项工作的主要目的是调查NLP在药理学领域的最新使用。正如我们的工作所表明的那样,NLP是药理学高度相关的信息提取和处理方法。它已被广泛使用,从智能搜索到成千上万的医疗文件到在社交媒体中找到对抗性药物相互作用的痕迹。我们将覆盖范围分为五个类别,以调查现代NLP方法论,常见的任务,相关的文本数据,知识库和有用的编程库。我们将这五个类别分为适当的子类别,描述其主要属性和想法,并以表格形式进行总结。最终的调查介绍了该领域的全面概述,对从业者和感兴趣的观察者有用。
translated by 谷歌翻译
实现通用语言情报是自然语言处理的长期目标,标准评估基准发挥基本和指导作用。我们认为,对于通用语言智能评估,基准本身需要全面和系统。为此,我们提出了Cuge,一种中文语言理解和生成评估基准,具有以下特征:(1)分层基准框架,其中数据集主要选择和组织语言能力 - 任务数据集层次结构。 (2)多级评分策略,其中基于分层框架提供了不同级别的模型性能。为了促进CUGE,我们提供了一个公共排行榜,可以自定义,以支持灵活的模型判断标准。代表性预先训练的语言模型的评估结果表明了对通用语言智能的完善的充足空间。 Cuge在Cuge.baai.ac.cn上公开提供。
translated by 谷歌翻译
同行评审是一项广泛接受的研究评估机制,在学术出版中发挥关键作用。然而,批评已经长期升级了这种机制,主要是因为它的低效率和主体性。近年来已经看到人工智能(AI)在协助同行评审过程中的应用。尽管如此,随着人类的参与,这种限制仍然是不可避免的。在本文中,我们提出了自动化学术纸质审查(ASPR)的概念,并审查了相关的文献和技术,讨论实现全面的计算机化审查流程的可能性。我们进一步研究了现有技术ASPR的挑战。在审查和讨论的基础上,我们得出结论,ASPR的每个阶段都有相应的研究和技术。这验证了随着相关技术继续发展的长期可以实现ASPR。其实现中的主要困难在于不完美的文献解析和表示,数据不足,数据缺陷,人机互动和有缺陷的深度逻辑推理。在可预见的未来,ASPR和同行评审将在ASPR能够充分承担从人类的审查工作量之前以加强方式共存。
translated by 谷歌翻译
在科学研究中,该方法是解决科学问题和关键研究对象的必不可少手段。随着科学的发展,正在提出,修改和使用许多科学方法。作者在抽象和身体文本中描述了该方法的详细信息,并且反映该方法名称的学术文献中的关键实体称为方法实体。在大量的学术文献中探索各种方法实体有助于学者了解现有方法,为研究任务选择适当的方法并提出新方法。此外,方法实体的演变可以揭示纪律的发展并促进知识发现。因此,本文对方法论和经验作品进行了系统的综述,重点是从全文学术文献中提取方法实体,并努力使用这些提取的方法实体来建立知识服务。首先提出了本综述涉及的关键概念的定义。基于这些定义,我们系统地审查了提取和评估方法实体的方法和指标,重点是每种方法的利弊。我们还调查了如何使用提取的方法实体来构建新应用程序。最后,讨论了现有作品的限制以及潜在的下一步。
translated by 谷歌翻译
Due to their crucial role in all NLP, several benchmarks have been proposed to evaluate pretrained language models. In spite of these efforts, no public benchmark of diverse nature currently exists for evaluation of Arabic. This makes it challenging to measure progress for both Arabic and multilingual language models. This challenge is compounded by the fact that any benchmark targeting Arabic needs to take into account the fact that Arabic is not a single language but rather a collection of languages and varieties. In this work, we introduce ORCA, a publicly available benchmark for Arabic language understanding evaluation. ORCA is carefully constructed to cover diverse Arabic varieties and a wide range of challenging Arabic understanding tasks exploiting 60 different datasets across seven NLU task clusters. To measure current progress in Arabic NLU, we use ORCA to offer a comprehensive comparison between 18 multilingual and Arabic language models. We also provide a public leaderboard with a unified single-number evaluation metric (ORCA score) to facilitate future research.
translated by 谷歌翻译
文本分类是具有各种有趣应用程序的典型自然语言处理或计算语言学任务。随着社交媒体平台上的用户数量的增加,数据加速促进了有关社交媒体文本分类(SMTC)或社交媒体文本挖掘的新兴研究。与英语相比,越南人是低资源语言之一,仍然没有集中精力并彻底利用。受胶水成功的启发,我们介绍了社交媒体文本分类评估(SMTCE)基准,作为各种SMTC任务的数据集和模型的集合。借助拟议的基准,我们实施和分析了各种基于BERT的模型(Mbert,XLM-R和Distilmbert)和基于单语的BERT模型(Phobert,Vibert,Vibert,Velectra和Vibert4news)的有效性SMTCE基准。单语模型优于多语言模型,并实现所有文本分类任务的最新结果。它提供了基于基准的多语言和单语言模型的客观评估,该模型将使越南语言中有关贝尔特兰的未来研究有利。
translated by 谷歌翻译
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 42 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
translated by 谷歌翻译
自然语言推论(NLI)是自然语言处理中的热门话题研究,句子之间的矛盾检测是NLI的特殊情况。这被认为是一项困难的NLP任务,当在许多NLP应用程序中添加为组件时,其影响很大,例如问答系统,文本摘要。阿拉伯语是由于其丰富的词汇,语义歧义而检测矛盾的最具挑战性的低资源语言之一。我们创建了一个超过12K句子的数据集并命名为Arnli,这将是公开可用的。此外,我们采用了一种新的模型,该模型受到斯坦福大学矛盾检测的启发,提出了有关英语的解决方案。我们提出了一种方法,以使用矛盾向量与语言模型向量作为机器学习模型的输入来检测阿拉伯语对句子之间的矛盾。我们分析了不同传统的机器学习分类器的结果,并比较了他们在创建的数据集(Arnli)和Pheme,病态的英语数据集的自动翻译上进行了比较。使用随机森林分类器,精度为99%,60%和75%的Pheme,Sick和Arnli的最佳结果。
translated by 谷歌翻译
多文件摘要(MDS)是信息聚合的有效工具,它从与主题相关文档集群生成信息和简洁的摘要。我们的调查是,首先,系统地概述了最近的基于深度学习的MDS模型。我们提出了一种新的分类学,总结神经网络的设计策略,并进行全面的最先进的概要。我们突出了在现有文献中很少讨论的各种客观函数之间的差异。最后,我们提出了与这个新的和令人兴奋的领域有关的几个方向。
translated by 谷歌翻译
这项研究提供了对僧伽罗文本分类的预训练语言模型的性能的首次全面分析。我们测试了一组不同的Sinhala文本分类任务,我们的分析表明,在包括Sinhala(XLM-R,Labse和Laser)的预训练的多语言模型中,XLM-R是迄今为止Sinhala文本的最佳模型分类。我们还预先培训了两种基于罗伯塔的单语僧伽罗模型,它们远远优于僧伽罗的现有预训练的语言模型。我们表明,在微调时,这些预训练的语言模型为僧伽罗文本分类树立了非常强大的基线,并且在标记数据不足以进行微调的情况下非常强大。我们进一步提供了一组建议,用于使用预训练的模型进行Sinhala文本分类。我们还介绍了新的注释数据集,可用于僧伽罗文本分类的未来研究,并公开发布我们的预培训模型。
translated by 谷歌翻译
This preprint describes work in progress on LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages. LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022). The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe how we plan to use the data for modeling experiments and discuss limitations of the dataset.
translated by 谷歌翻译
假新闻的迅速增加,这对社会造成重大损害,触发了许多假新闻相关研究,包括开发假新闻检测和事实验证技术。这些研究的资源主要是从Web数据中获取的公共数据集。我们通过三个观点调查了与假新闻研究相关的118个数据集:(1)假新闻检测,(2)事实验证,(3)其他任务;例如,假新闻和讽刺检测分析。我们还详细描述了他们的利用任务及其特征。最后,我们突出了假新闻数据集建设中的挑战以及解决这些挑战的一些研究机会。我们的调查通过帮助研究人员找到合适的数据集来促进假新闻研究,而无需重新发明轮子,从而提高了深度的假新闻研究。
translated by 谷歌翻译