我们使用嵌入式音频组件为软气动执行器创建虚拟2D触觉阵列。我们检测到声音调制的特定接触特定变化以推断触觉信息。我们评估不同的声音表示和学习方法,甚至可以检测到较小的接触变化。我们以pneflex执行器的示例演示了声学触觉传感器阵列,并使用盲文显示器单独控制29x4销与执行器的90x10 mm棕榈表面的接触。评估空间分辨率,声传感器以X和Y方向将边缘定位在X和Y方向上,其根平方回归误差分别为1.67 mm和0.0 mm。甚至具有高度精度测量的单个盲文销的光接触。最后,我们通过成功阅读单个显示单元格的26个字母来证明传感器对复杂接触形状的敏感性,分类速率为88%。
translated by 谷歌翻译
我们提出了一种使用嵌入式麦克风和扬声器来测量不同执行器特性的软气动执行器的感应方法。执行器的物理状态确定声音通过结构传播时的特定调制。使用简单的机器学习,我们创建了一个计算传感器,该传感器从声音录音中渗透相应的状态。我们在软气动连续执行器上演示了声传感器,并使用它来测量接触位置,接触力,对象材料,执行器通胀和执行器温度。我们表明该传感器是可靠的(六个接触位置的平均分类速率为93%),精确(平均空间精度为3.7毫米),并且可抵抗常见的干扰(如背景噪声)。最后,我们比较了不同的声音和学习方法,并以20毫秒的白噪声和支持向量分类器作为传感器模型获得最佳结果。
translated by 谷歌翻译
软机器人是一个新兴领域,对需要与环境或人类的安全性和强大的互动的任务产生了有希望的结果,例如抓握,操纵和人机互动。软机器依赖于本质上兼容的部件,并且难以配备传统的刚性传感器,这些传统传感器会干扰其合规性。我们提出了一种高度灵活的触觉传感器,在低成本且易于制造,同时独立于14个出租车测量接触压力。传感器由压阻织物构成,用于高度敏感,连续的响应,以及来自定制设计的柔性印刷电路板,提供高的Taxel密度。从这些TaxLes,可以推断出与传感器的接触位置和强度。在本文中,我们解释了所提出的传感器的设计和制造,表征其输入输出关系,在装备到软机器人RBO手2的硅树脂基气动执行器时,评估其对遵守的影响,并证明传感器提供基于学习的携手对象识别的丰富和有用的反馈。
translated by 谷歌翻译
空中触觉创造了一种新的反馈方式,以使人们能够在空中感觉到触觉。超声波阵列聚焦在空间中的声音辐射压力,以引起由此产生的皮肤偏转的触觉感觉。在这项工作中,我们提出了一个低成本的触觉机器人,以测试空中触觉。通过将桌面机器人组与3D打印的仿生触觉传感器相结合,我们开发了一个可以感知,映射和可视化超声传感器阵列产生的空气触觉感觉的系统。我们通过对各种空气中的触觉刺激进行测试,包括未经调节和调节的焦点来评估触觉机器人。我们将刺激的映射与用于测试空气中触觉的另一种方法的映射:激光多普勒振动法,突出了触觉机器人的优势,包括较低的成本,轻巧的表格因子和易用性。总体而言,这些发现表明我们的方法具有感知空气中触觉的多重好处,并为扩展测试以更好地模仿人触觉感知开辟了新的可能性。
translated by 谷歌翻译
视觉的触觉传感器由于经济实惠的高分辨率摄像机和成功的计算机视觉技术而被出现为机器人触摸的有希望的方法。但是,它们的物理设计和他们提供的信息尚不符合真实应用的要求。我们提供了一种名为Insight的强大,柔软,低成本,视觉拇指大小的3D触觉传感器:它不断在其整个圆锥形感测表面上提供定向力分布图。围绕内部单眼相机构造,传感器仅在刚性框架上仅成型一层弹性体,以保证灵敏度,鲁棒性和软接触。此外,Insight是第一个使用准直器将光度立体声和结构光混合的系统来检测其易于更换柔性外壳的3D变形。通过将图像映射到3D接触力的空间分布(正常和剪切)的深神经网络推断力信息。洞察力在0.4毫米的总空间分辨率,力量幅度精度约为0.03 n,并且对于具有不同接触面积的多个不同触点,在0.03-2 n的范围内的5度大约5度的力方向精度。呈现的硬件和软件设计概念可以转移到各种机器人部件。
translated by 谷歌翻译
尽管已显示触觉皮肤可用于检测机器人臂及其环境之间的碰撞,但并未广泛用于改善机器人抓握和手持操作。我们提出了一种新型的传感器设计,用于覆盖现有的多指机器人手。我们在台式实验中使用织物和抗静态泡沫底物分析了四种不同的压电材料的性能。我们发现,尽管压电泡沫被设计为包装材料,而不是用作传感底物,但它的性能与专门为此目的设计的织物相当。尽管这些结果证明了压电泡沫对触觉传感应用的潜力,但它们并未完全表征这些传感器在机器人操作中使用的功效。因此,我们使用低密度泡沫底物来开发可扩展的触觉皮肤,该皮肤可以连接到机器人手的手掌上。我们使用该传感器展示了几项机器人操纵任务,以显示其可靠地检测和本地化接触的能力,并在掌握和运输任务期间分析接触模式。我们的项目网站提供了有关传感器开发和分析中使用的所有材料,软件和数据的详细信息:https://sites.google.com/gcloud.utah.edu/piezoresistive-tactile-sensing/。
translated by 谷歌翻译
Robotic tactile sensing provides a method of recognizing objects and their properties where vision fails. Prior work on tactile perception in robotic manipulation has frequently focused on exploratory procedures (EPs). However, the also-human-inspired technique of in-hand-manipulation can glean rich data in a fraction of the time of EPs. We propose a simple 3-DOF robotic hand design, optimized for object rolling tasks via a variable-width palm and associated control system. This system dynamically adjusts the distance between the finger bases in response to object behavior. Compared to fixed finger bases, this technique significantly increases the area of the object that is exposed to finger-mounted tactile arrays during a single rolling motion (an increase of over 60% was observed for a cylinder with a 30-millimeter diameter). In addition, this paper presents a feature extraction algorithm for the collected spatiotemporal dataset, which focuses on object corner identification, analysis, and compact representation. This technique drastically reduces the dimensionality of each data sample from 10 x 1500 time series data to 80 features, which was further reduced by Principal Component Analysis (PCA) to 22 components. An ensemble subspace k-nearest neighbors (KNN) classification model was trained with 90 observations on rolling three different geometric objects, resulting in a three-fold cross-validation accuracy of 95.6% for object shape recognition.
translated by 谷歌翻译
触摸感在使人类能够理解和与周围环境互动方面发挥着关键作用。对于机器人,触觉感应也是不可替代的。在与物体交互时,触觉传感器为机器人提供了理解物体的有用信息,例如分布式压力,温度,振动和纹理。在机器人抓住期间,视力通常由其最终效应器封闭,而触觉感应可以测量视觉无法访问的区域。在过去的几十年中,已经为机器人开发了许多触觉传感器,并用于不同的机器人任务。在本章中,我们专注于使用触觉对机器人抓握的触觉,并研究近期对物质性质的触觉趋势。我们首先讨论了术语,即形状,姿势和材料特性对三个重要的物体特性的触觉感知。然后,我们通过触觉感应审查抓握稳定性预测的最新发展。在这些作品中,我们确定了在机器人抓握中协调视觉和触觉感应的要求。为了证明使用触觉传感来提高视觉感知,介绍了我们最近的抗议重建触觉触觉感知的发展。在所提出的框架中,首先利用相机视觉的大型接收领域以便快速搜索含有裂缝的候选区域,然后使用高分辨率光学触觉传感器来检查这些候选区域并重建精制的裂缝形状。实验表明,我们所提出的方法可以实现0.82mm至0.24mm的平均距离误差的显着降低,以便重建。最后,我们在讨论了对机器人任务中施加触觉感应的公开问题和未来方向的讨论。
translated by 谷歌翻译
当没有光学信息可用时,在不确定环境下的机器人探索具有挑战性。在本文中,我们提出了一种自主解决方案,即仅基于触觉感测,探索一个未知的任务空间。我们首先根据MEMS晴雨表设备设计了晶须传感器。该传感器可以通过非侵入性与环境进行交互来获取联系信息。该传感器伴随着一种计划技术,可以通过使用触觉感知来产生探索轨迹。该技术依赖于触觉探索的混合政策,其中包括用于对象搜索的主动信息路径计划,以及用于轮廓跟踪的反应性HOPF振荡器。结果表明,混合勘探政策可以提高对象发现的效率。最后,通过细分对象和分类来促进场景的理解。开发了一个分类器,以根据晶须传感器收集的几何特征识别对象类别。这种方法证明了晶须传感器以及触觉智能,可以提供足够的判别特征来区分对象。
translated by 谷歌翻译
人类的物体感知能力令人印象深刻,当试图开发具有类似机器人的解决方案时,这变得更加明显。从人类如何将视觉和触觉用于对象感知和相关任务的灵感中,本文总结了机器人应用的多模式对象感知的当前状态。它涵盖了生物学灵感,传感器技术,数据集以及用于对象识别和掌握的感觉数据处理的各个方面。首先,概述了多模式对象感知的生物学基础。然后讨论了传感技术和数据收集策略。接下来,介绍了主要计算方面的介绍,突出显示了每个主要应用领域的一些代表性文章,包括对象识别,传输学习以及对象操纵和掌握。最后,在每个领域的当前进步中,本文概述了有希望的新研究指示。
translated by 谷歌翻译
彼此接触的任何两个物体都会仅仅是由于重力或机械接触而引起的力,例如机器人手臂抓住一个物体,甚至是我们膝关节处的两个骨头之间的接触。自然测量和监视这些接触力的能力允许从仓库管理(基于重量检测错误包装)到机器人技术(使机器人臂的抓地力与人类皮肤一样敏感)和医疗保健(膝关节植入物)的大量应用。设计一个无处不在的力传感器是充满挑战的,该传感器可自然地用于所有这些应用。首先,传感器应足够小,以适合狭窄的空间。接下来,我们不想铺设笨重的电缆来读取传感器的力值。最后,我们需要进行无电池设计以满足体内应用程序。我们开发了WiforCesticker,这是一种无线,无电池,类似贴纸的力传感器,可以在任何表面上都可以无处不在,例如所有仓库包装,机器人手臂和膝关节。 WiforCesticker首先设计一个$ 4 $ 〜mm〜 $ \ $ \ times $〜$〜$ 2 $ 〜mm〜 $ \ $ \ times $〜$〜$〜$ 0.4 $〜毫米电容传感器设计,配备了$ 10 $〜$〜$〜$〜$〜$〜$〜$ 〜mm〜mm 〜mm 〜mm 〜mm在灵活的PCB基材上设计。其次,它引入了一种新的机制,可以通过将传感器与COTS RFID系统插入传感器,从而无线读取器无线读取器可以通过无线读取器读取力信息。该传感器可以在多个测试环境中检测到$ 0 $ -6 $ 〜n的力量,感应精度为$ <0.5 $ 〜n,并在传感器上使用超过10,000美元的$ 10,000 $变化的力级按下。我们还通过设计传感器展示了两个应用程序案例研究,称量仓库包和骨接头施加的传感力。
translated by 谷歌翻译
通过触觉反馈感知物体滑移的能力使人类能够完成复杂的操纵任务,包括保持稳定的掌握。尽管触觉信息用于许多应用程序,但触觉传感器尚未在工业机器人设置中广泛部署。挑战的一部分在于从触觉数据流中识别滑移和其他事件。在本文中,我们提出了一种基于学习的方法,可以使用气压触觉传感器检测滑移。这些传感器具有许多理想的属性,包括高耐用性和可靠性,并且由廉价的现成组件构建。我们训练一个时间卷积神经网络来检测滑动,达到高检测精度,同时表现出稳健性,以对滑动运动的速度和方向。此外,我们在涉及各种常见对象的两项操纵任务上测试了探测器,并证明了对训练期间看不到的现实情况的成功概括。我们认为,气压触觉传感技术与数据驱动的学习相结合,适用于许多操纵任务,例如滑移补偿。
translated by 谷歌翻译
我们引入了一个球形指尖传感器进行动态操作。它基于气压压力和飞行时间接近传感器,并且是低延迟,紧凑且身体健壮的。传感器使用训练有素的神经网络根据压力传感器的数据来估计接触位置和三轴接触力,这些数据嵌入了传感器的聚氨酯橡胶范围内。飞行器传感器朝三个不同的外向方向面对,并且一个集成的微控制器样品以200 Hz的速度每个单个传感器。为了量化系统潜伏期对动态操作性能的影响,我们开发和分析了一个称为碰撞脉冲比率的度量,并表征了我们新传感器的端到端潜伏期。我们还向传感器提出了实验演示,包括测量接触过渡,进行粗大映射,与移动物体保持接触力以及避免碰撞的反应。
translated by 谷歌翻译
触觉感应是执行灵巧操纵任务的机器人的基本能力。虽然相机,LIDAR和其他远程传感器可以在全球和立即评估场景,但触觉传感器可以减少它们的测量不确定性,并在往复对象和机器人之间获得局部物理交互的信息,这通常不能通过遥感。触觉传感器可以分为两个主要类别:电子触觉皮肤和基于相机的光学触觉传感器。前者是薄薄的并且可以安装在不同的身体部位上,而后者呈现更棱柱形状并具有更高的感测分辨率,具有良好的优势,可以用作机器人手指或指尖。这种光学触觉传感器之一是我们的Geltip传感器,其成形为手指,并且可以在其表面的任何位置感接触。这样,Geltip传感器能够从所有方向上检测触点,如人的手指。为了捕获这些触点,它使用安装在其基部的相机来跟踪覆盖其空心,刚性和透明体的不透明弹性体的变形。由于这种设计,配备盖施电流传感器的夹具能够同时监测其掌握内外的触点。使用该传感器进行的实验表明了触点是如何定位的,更重要的是,利用杂波中的Dexterous操纵任务中的全面触摸感测的优点,甚至可能是必要的,其中触点可能发生在手指的任何位置。可以在HTTPS://Danfergo.github.io/geltip/中找到制造Geltip传感器的所有材料
translated by 谷歌翻译
机器学习(ML)是指根据大量数据预测有意义的输出或对复杂系统进行分类的计算机算法。 ML应用于各个领域,包括自然科学,工程,太空探索甚至游戏开发。本文的重点是在化学和生物海洋学领域使用机器学习。在预测全球固定氮水平,部分二氧化碳压力和其他化学特性时,ML的应用是一种有前途的工具。机器学习还用于生物海洋学领域,可从各种图像(即显微镜,流车和视频记录器),光谱仪和其他信号处理技术中检测浮游形式。此外,ML使用其声学成功地对哺乳动物进行了分类,在特定的环境中检测到濒临灭绝的哺乳动物和鱼类。最重要的是,使用环境数据,ML被证明是预测缺氧条件和有害藻华事件的有效方法,这是对环境监测的重要测量。此外,机器学习被用来为各种物种构建许多对其他研究人员有用的数据库,而创建新算法将帮助海洋研究界更好地理解海洋的化学和生物学。
translated by 谷歌翻译
大物体的操纵和安全地在人类附近进行安全操作的能力是通用国内机器人助手的关键能力。我们介绍了一种柔软,触觉的人形的人形机器人的设计,并展示了用于处理大物体的全身丰富的接触操作策略。我们展示了我们的硬件设计理念,用于使用软触觉传感模块,包括:(i)低成本,抗缝,接触压力定位的武器, (ii)基于TRI软气泡传感器的爪子,用于最终效应器,(III)柔顺的力/几何传感器,用于粗糙几何感测表面/胸部。我们利用这些模块的机械智能和触觉感应,为全身抓握控制进行开发和展示运动原语。我们评估硬件在实现各种大型国内物体上实现不同优势的掌握。我们的结果表明,利用富含接触的操纵策略的柔软度和触觉感应的重要性,以及与世界的全身力量控制的互动前进的道路。
translated by 谷歌翻译
在各种地形上进行运动的能力对于腿部机器人至关重要。但是,机器人必须更好地了解其在不同地形上进行强大运动的表面。动物和人类能够在脚上的触觉感觉的帮助下识别表面。虽然,腿部机器人的脚触觉感觉并没有得到太多探索。本文介绍了针对触觉脚(TSF)的新型四足机器人Dogtouch的研究。 TSF允许使用触觉传感器和卷积神经网络(CNN)识别不同的表面纹理。实验结果表明,我们训练有素的基于CNN的模型的足够验证精度为74.37 \%,对线模式的90 \%\%的识别最高。将来,我们计划通过呈现各种模式深度的表面样本并应用高级深度学习和浅层学习模型来改善预测模型。此外,我们提出了一种新颖的方法,用于导航四倍和腿部机器人。我们可以安排触觉铺路纹理表面(类似于盲人或视障人士)。因此,只需识别将指示直路,左或右转弯,行人穿越,道路等的特定触觉图案,就可以在未知环境中进行运动,无论光线如何,都可以允许强大的导航。配备了视觉和触觉感知系统的未来四足机器人将能够在非结构化的室内和室外环境中安全,智能地导航和交互。
translated by 谷歌翻译
在本文中,我们着重于分析使用大型材料数据库材料识别的触觉传感的热模式。许多因素会影响热识别性能,包括传感器噪声,传感器和物体的初始温度,材料的热积液以及接触时间。为了分析这些因素对热识别的影响,我们使用了一个半无限固体的热模型来模拟来自CES Edupack Level-1数据库中所有材料的热传输数据。我们使用支持矢量机(SVM)来预测2346个材料对的二元材料识别的F1分数。我们还使用配备了热传感器的真实机器人收集了数据,并分析了其在66个现实世界对的材料识别性能。此外,我们分析了对模型进行模拟数据培训并在实体机器人数据上进行测试时的性能。我们的模型预测了模拟数据的0.980 F1分数的材料识别性能,现实世界中具有恒定初始传感器温度的现实世界数据的0.994 F1得分,现实世界数据的0.966 F1得分具有不同的初始传感器温度,并且0.815 SIM到运行转移的F1分数。最后,我们根据从这些结果中获得的见解提供了一些有关传感器设计和参数选择的准则。我们发布了模拟和实体机器人数据集,以供机器人社区进一步使用。
translated by 谷歌翻译
Effective force modulation during tissue manipulation is important for ensuring safe robot-assisted minimally invasive surgery (RMIS). Strict requirements for in-vivo distal force sensing have led to prior sensor designs that trade off ease of manufacture and integration against force measurement accuracy along the tool axis. These limitations have made collecting high-quality 3-degree-of-freedom (3-DoF) bimanual force data in RMIS inaccessible to researchers. We present a modular and manufacturable 3-DoF force sensor that integrates easily with an existing RMIS tool. We achieve this by relaxing biocompatibility and sterilizability requirements while utilizing commercial load cells and common electromechanical fabrication techniques. The sensor has a range of +-5 N axially and +-3 N laterally with average root mean square errors(RMSEs) of below 0.15 N in all directions. During teleoperated mock tissue manipulation tasks, a pair of jaw-mounted sensors achieved average RMSEs of below 0.15 N in all directions. For grip force, it achieved an RMSE of 0.156 N. The sensor has sufficient accuracy within the range of forces found in delicate manipulation tasks, with potential use in bimanual haptic feedback and robotic force control. As an open-source design, the sensors can be adapted to suit additional robotic applications outside of RMIS.
translated by 谷歌翻译
与传统的机器人手不同,由于固有的不确定性,兼容的手不足的手对模型的挑战。因此,通常基于视觉感知执行抓握对象的姿势估计。但是,在闭塞或部分占地环境中,对手和物体的视觉感知可以受到限制。在本文中,我们旨在探索触觉的使用,即动力学和触觉感测,以构成姿势估计和手动操纵,手工不足。这种触觉方法会减轻并非总是可用的视线。我们强调识别系统的特征状态表示,该状态表示不包括视觉,可以通过简单和低成本的硬件获得。因此,对于触觉传感,我们提出了一个低成本和灵活的传感器,该传感器主要是与指尖一起打印的3D,并可以提供隐式的接触信息。我们将双手手动的手作为测试案例不足,我们分析了动力学和触觉特征以及各种回归模型对预测准确性的贡献。此外,我们提出了一种模型预测控制(MPC)方法,该方法利用姿势估计将对象操纵为仅基于触觉的所需状态。我们进行了一系列实验,以验证具有不同几何形状,刚度和纹理的各种物体的姿势的能力,并以相对较高的精度显示工作空间中的目标。
translated by 谷歌翻译