Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data. However, the existing works fail to address all these practical concerns in FL: limited communication resources, dynamic network conditions and heterogeneous client properties, which slow down the convergence of FL. To tackle the above challenges, we propose a heterogeneity-aware FL framework, called FedCG, with adaptive client selection and gradient compression. Specifically, the parameter server (PS) selects a representative client subset considering statistical heterogeneity and sends the global model to them. After local training, these selected clients upload compressed model updates matching their capabilities to the PS for aggregation, which significantly alleviates the communication load and mitigates the straggler effect. We theoretically analyze the impact of both client selection and gradient compression on convergence performance. Guided by the derived convergence rate, we develop an iteration-based algorithm to jointly optimize client selection and compression ratio decision using submodular maximization and linear programming. Extensive experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$\times$ speedup compared to other methods.
translated by 谷歌翻译
联合学习(FL)算法通常在每个圆数(部分参与)大并且服务器的通信带宽有限时对每个轮子(部分参与)进行分数。近期对FL的收敛分析的作品专注于无偏见的客户采样,例如,随机均匀地采样,由于高度的系统异质性和统计异质性而均匀地采样。本文旨在设计一种自适应客户采样算法,可以解决系统和统计异质性,以最小化壁时钟收敛时间。我们获得了具有任意客户端采样概率的流动算法的新的遗传融合。基于界限,我们分析了建立了总学习时间和采样概率之间的关系,这导致了用于训练时间最小化的非凸优化问题。我们设计一种高效的算法来学习收敛绑定中未知参数,并开发低复杂性算法以大致解决非凸面问题。硬件原型和仿真的实验结果表明,与几个基线采样方案相比,我们所提出的采样方案显着降低了收敛时间。值得注意的是,我们的硬件原型的方案比均匀的采样基线花费73%,以达到相同的目标损失。
translated by 谷歌翻译
最近,基于区块链的联合学习(BFL)引起了密集的研究关注,因为培训过程是可审核的,并且该体系结构无助于避免了Vanilla Federated学习(VFL)中参数服务器的单点故障。然而,BFL大大升级了通信流量量,因为BFL客户端获得的所有本地模型更新(即,模型参数的更改)都将转移给所有矿工进行验证以及所有客户端以进行聚合。相比之下,参数服务器和VFL中的客户端仅保留汇总模型更新。因此,BFL的巨大沟通流量将不可避免地损害培训效率,并阻碍BFL现实的部署。为了提高BFL的实用性,我们是第一个通过压缩BFL中的通信(称为BCFL)来提出基于快速区块链的联合学习框架的人之一。同时,我们得出了BCFL的收敛速率,而非凸损失损失。为了最大化最终模型的准确性,我们进一步提出问题,以最大程度地减少收敛率的训练损失,而相对于压缩率和块生成速率的训练时间有限,这是BI-CONVEX优化问题,可以是有效解决。最后,为了证明BCFL的效率,我们对标准CIFAR-10和女权主义数据集进行了广泛的实验。我们的实验结果不仅验证了我们的分析的正确性,而且还表明BCFL可以显着将通信流量降低95-98%,或者与BFL相比,训练时间缩短了90-95%。
translated by 谷歌翻译
联合学习(FL)引发了高通信开销,这可以通过压缩模型更新而大大缓解。然而,网络环境中压缩和模型精度之间的权衡仍不清楚,为简单起见,大多数实现仅采用固定压缩率。在本文中,我们首次系统地检查了该权衡,识别压缩误差对最终模型精度的影响,相对于学习率。具体而言,我们将每个全局迭代的压缩误差因其强大凸面和非凸损耗下的收敛速度分析。然后,我们通过策略性地调整每次迭代中的压缩速率来提高最终模型精度来最大化最终模型精度的适应框架。我们讨论了具有代表压缩算法的实用网络中框架的关键实施问题。对流行的MNIST和CIFAR-10数据集的实验证实,我们的解决方案有效地降低了网络流量,但在FL中保持了高模型精度。
translated by 谷歌翻译
在最新的联合学习研究(FL)的研究中,广泛采用了客户选择方案来处理沟通效率的问题。但是,从随机选择的非代表性子集汇总的模型更新的较大差异直接减慢了FL收敛性。我们提出了一种新型的基于聚类的客户选择方案,以通过降低方差加速FL收敛。简单而有效的方案旨在改善聚类效果并控制效果波动,因此,以采样的一定代表性生成客户子集。从理论上讲,我们证明了降低方差方案的改进。由于差异的差异,我们还提供了提出方法的更严格的收敛保证。实验结果证实了与替代方案相比,我们计划的效率超出了效率。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
联合学习(FL)是一种有效的分布式机器学习范式,以隐私的方式采用私人数据集。 FL的主要挑战是,END设备通常具有各种计算和通信功能,其培训数据并非独立且分布相同(非IID)。由于在移动网络中此类设备的通信带宽和不稳定的可用性,因此只能在每个回合中选择最终设备(也称为参与者或客户端的参与者或客户端)。因此,使用有效的参与者选择方案来最大程度地提高FL的性能,包括最终模型的准确性和训练时间,这一点至关重要。在本文中,我们对FL的参与者选择技术进行了评论。首先,我们介绍FL并突出参与者选择期间的主要挑战。然后,我们根据其解决方案来审查现有研究并将其分类。最后,根据我们对该主题领域最新的分析的分析,我们为FL的参与者选择提供了一些未来的指示。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
Federated learning (FL) is a method to train model with distributed data from numerous participants such as IoT devices. It inherently assumes a uniform capacity among participants. However, participants have diverse computational resources in practice due to different conditions such as different energy budgets or executing parallel unrelated tasks. It is necessary to reduce the computation overhead for participants with inefficient computational resources, otherwise they would be unable to finish the full training process. To address the computation heterogeneity, in this paper we propose a strategy for estimating local models without computationally intensive iterations. Based on it, we propose Computationally Customized Federated Learning (CCFL), which allows each participant to determine whether to perform conventional local training or model estimation in each round based on its current computational resources. Both theoretical analysis and exhaustive experiments indicate that CCFL has the same convergence rate as FedAvg without resource constraints. Furthermore, CCFL can be viewed of a computation-efficient extension of FedAvg that retains model performance while considerably reducing computation overhead.
translated by 谷歌翻译
联合学习(FL)能够通过定期聚合培训的本地参数来在多个边缘用户执行大的分布式机器学习任务。为了解决在无线迷雾云系统上实现支持的关键挑战(例如,非IID数据,用户异质性),我们首先基于联合平均(称为FedFog)的高效流行算法来执行梯度参数的本地聚合在云端的FOG服务器和全球培训更新。接下来,我们通过调查新的网络知识的流动系统,在无线雾云系统中雇用FEDFog,这促使了全局损失和完成时间之间的平衡。然后开发了一种迭代算法以获得系统性能的精确测量,这有助于设计有效的停止标准以输出适当数量的全局轮次。为了缓解级体效果,我们提出了一种灵活的用户聚合策略,可以先培训快速用户在允许慢速用户加入全局培训更新之前获得一定程度的准确性。提供了使用若干现实世界流行任务的广泛数值结果来验证FEDFOG的理论融合。我们还表明,拟议的FL和通信的共同设计对于在实现学习模型的可比准确性的同时,基本上提高资源利用是必要的。
translated by 谷歌翻译
物联网(IoT)的扩散以及对设备进行感应,计算和通信功能的广泛使用,激发了人工智能增强的智能应用程序。经典人工智能算法需要集中的数据收集和处理,这些数据收集和处理在现实的智能物联网应用程序中,由于日益增长的数据隐私问题和分布式数据集。联合学习(FL)已成为一个分布式隐私的学习框架,该框架使IoT设备能够通过共享模型参数训练全局模型。但是,由于频繁的参数传输引起的效率低下会大大降低FL性能。现有的加速算法由两种主要类型组成,包括本地更新,考虑通信与计算之间的权衡以及参数压缩之间的权衡,考虑到通信和精度之间的权衡。共同考虑这两个权衡并适应平衡其对融合的影响尚未解决。为了解决该问题,本文提出了一种新型有效的自适应联合优化(EAFO)算法,以提高FL的效率,该算法通过共同考虑两个变量(包括本地更新和参数压缩)来最大程度地减少学习误差,并使FL能够自适应地调整两个变量和两个变量和两个变量。计算,沟通和精确度之间的平衡权衡。实验结果表明,与最先进的算法相比,提出的EAFO可以更快地实现更高的精度。
translated by 谷歌翻译
与传统机器学习(ML)相比,联邦学习(FL)被认为是解决移动设备的数据隐私问题的吸引力框架。使用Edge Server(ESS)作为中间人在接近度执行模型聚合可以减少传输开销,并且它能够在低延迟FL中实现很大的潜力,其中FL(HFL)的分层体系结构被吸引更多地关注。设计适当的客户选择策略可以显着提高培训性能,并且已广泛用于FL研究。然而,据我们所知,没有专注于HFL的研究。此外,HFL的客户选择面临的挑战比传统的FL更多,例如,客户端 - es对的时变连接和网络运营商的有限预算(否)。在本文中,我们调查了HFL的客户选择问题,其中no no学习成功参与客户的数量以改善培训性能(即,在每轮中选择多个客户端)以及每个ES的有限预算。基于上下文组合多武装强盗(CC-MAB)开发了一个称为上下文知识的在线客户选择(COCS)的在线策略。 COCs观察局部计算和客户端对传输的侧信息(上下文),并使客户选择决策最大化没有给出有限预算的实用程序。理论上,与强凸和非凸HFL上的Oracle策略相比,COCS遗憾地实现了载体遗憾。仿真结果还支持拟议的COCS政策对现实世界数据集的效率。
translated by 谷歌翻译
Federated learning (FL) is a collaborative machine learning framework that requires different clients (e.g., Internet of Things devices) to participate in the machine learning model training process by training and uploading their local models to an FL server in each global iteration. Upon receiving the local models from all the clients, the FL server generates a global model by aggregating the received local models. This traditional FL process may suffer from the straggler problem in heterogeneous client settings, where the FL server has to wait for slow clients to upload their local models in each global iteration, thus increasing the overall training time. One of the solutions is to set up a deadline and only the clients that can upload their local models before the deadline would be selected in the FL process. This solution may lead to a slow convergence rate and global model overfitting issues due to the limited client selection. In this paper, we propose the Latency awarE Semi-synchronous client Selection and mOdel aggregation for federated learNing (LESSON) method that allows all the clients to participate in the whole FL process but with different frequencies. That is, faster clients would be scheduled to upload their models more frequently than slow clients, thus resolving the straggler problem and accelerating the convergence speed, while avoiding model overfitting. Also, LESSON is capable of adjusting the tradeoff between the model accuracy and convergence rate by varying the deadline. Extensive simulations have been conducted to compare the performance of LESSON with the other two baseline methods, i.e., FedAvg and FedCS. The simulation results demonstrate that LESSON achieves faster convergence speed than FedAvg and FedCS, and higher model accuracy than FedCS.
translated by 谷歌翻译
联合学习允许多个参与者在不公开数据隐私的情况下协作培训高效模型。但是,这种分布式的机器学习培训方法容易受到拜占庭客户的攻击,拜占庭客户通过修改模型或上传假梯度来干扰全球模型的训练。在本文中,我们提出了一种基于联邦学习(CMFL)的新型无服务器联合学习框架委员会机制,该机制可以确保算法具有融合保证的鲁棒性。在CMFL中,设立了一个委员会系统,以筛选上载已上传的本地梯度。 The committee system selects the local gradients rated by the elected members for the aggregation procedure through the selection strategy, and replaces the committee member through the election strategy.基于模型性能和防御的不同考虑,设计了两种相反的选择策略是为了精确和鲁棒性。广泛的实验表明,与典型的联邦学习相比,与传统的稳健性相比,CMFL的融合和更高的准确性比传统的稳健性,以分散的方法的方式获得了传统的耐受性算法。此外,我们理论上分析并证明了在不同的选举和选择策略下CMFL的收敛性,这与实验结果一致。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
联邦元学习(FML)已成为应对当今边缘学习竞技场中的数据限制和异质性挑战的承诺范式。然而,其性能通常受到缓慢的收敛性和相应的低通信效率的限制。此外,由于可用的无线电频谱和物联网设备的能量容量通常不足,因此在在实际无线网络中部署FML时,控制资源分配和能量消耗是至关重要的。为了克服挑战,在本文中,我们严格地分析了每个设备对每轮全球损失减少的贡献,并使用非统一的设备选择方案开发FML算法(称为Nufm)以加速收敛。之后,我们制定了集成NuFM在多通道无线系统中的资源分配问题,共同提高收敛速率并最小化壁钟时间以及能量成本。通过逐步解构原始问题,我们设计了一个联合设备选择和资源分配策略,以解决理论保证问题。此外,我们表明Nufm的计算复杂性可以通过$ O(d ^ 2)$至$ o(d)$(使用模型维度$ d $)通过组合两个一阶近似技术来降低。广泛的仿真结果表明,与现有基线相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
机器学习模型已在移动网络中部署,以处理来自不同层的数据,以实现自动化网络管理和设备的智能。为了克服集中式机器学习的高度沟通成本和严重的隐私问题,已提出联合学习(FL)来实现网络设备之间的分布式机器学习。虽然在FL中广泛研究了计算和通信限制,但仍未探索设备存储对FL性能的影响。如果没有有效有效的数据选择政策来过滤设备上的大量流媒体数据,经典FL可能会遭受更长的模型训练时间(超过$ 4 \ times $)和显着的推理准确性(超过$ 7 \%\%$),则遭受了损失,观察到了。在我们的实验中。在这项工作中,我们迈出了第一步,考虑使用有限的在设备存储的FL的在线数据选择。我们首先定义了一个新的数据评估度量,以在FL中进行数据选择:在设备数据样本上,局部梯度在所有设备的数据上投影到全球梯度上。我们进一步设计\ textbf {ode},一个\ textbf {o} nline \ textbf {d} ata s \ textbf {e textbf {e} fl for f for fl f textbf {o}的框架,用于协作网络设备,以协作存储有价值的数据示例,并保证用于快速的理论保证同时提高模型收敛并增强最终模型精度。一项工业任务(移动网络流量分类)和三个公共任务(综合任务,图像分类,人类活动识别)的实验结果显示了ODE的显着优势,而不是最先进的方法。特别是,在工业数据集上,ODE的成就高达$ 2.5 \ times $ $加速的培训时间和6美元的最终推理准确性增加,并且在实践环境中对各种因素都有强大的态度。
translated by 谷歌翻译
联合学习(FL)通常以同步平行方式进行,其中慢速客户的参与延迟了训练迭代。当前的FL系统采用参与者选择策略,在每次迭代中选择具有优质数据的快速客户。但是,这在实践中并不总是可以的,而且选择策略通常必须在客户的速度和数据质量之间进行不愉快的权衡。在本文中,我们提出了双鱼座,这是一种具有智能参与者选择和用于加速培训的模型聚合的异步FL系统。为了避免产生过多的资源成本和陈旧的培训计算,双鱼座使用新颖的评分机制来识别合适的客户参加培训迭代。它还可以调整模型聚合的步伐,以动态限制所选客户端和服务器之间的进度差距,并在平滑的非convex设置中具有可证明的融合保证。我们已经在一个名为Plato的开源FL平台中实现了双鱼座,并评估了其在流行视觉和语言模型的大规模实验中的性能。双鱼座的表现优于最先进的同步和异步方案,分别高达2.0倍和1.9倍的时间加速。
translated by 谷歌翻译
联合学习(FL)可以使用学习者使用本地数据进行分布式培训,从而增强隐私和减少沟通。但是,它呈现出与数据分布,设备功能和参与者可用性的异质性有关的众多挑战,作为部署量表,这可能会影响模型融合和偏置。现有的FL方案使用随机参与者选择来提高公平性;然而,这可能导致资源低效和更低的质量培训。在这项工作中,我们系统地解决了FL中的资源效率问题,展示了智能参与者选择的好处,并将更新从争吵的参与者纳入。我们展示了这些因素如何实现资源效率,同时还提高了训练有素的模型质量。
translated by 谷歌翻译