对抗性的鲁棒性已成为机器学习越来越兴趣的话题,因为观察到神经网络往往会变得脆弱。我们提出了对逆转防御的信息几何表述,并引入Fire,这是一种针对分类跨透明镜损失的新的Fisher-Rao正则化,这基于对应于自然和受扰动输入特征的软磁输出之间的测量距离。基于SoftMax分布类的信息几何特性,我们为二进制和多类案例提供了Fisher-Rao距离(FRD)的明确表征,并绘制了一些有趣的属性以及与标准正则化指标的连接。此外,对于一个简单的线性和高斯模型,我们表明,在精度 - 舒适性区域中的所有帕累托最佳点都可以通过火力达到,而其他最先进的方法则可以通过火灾。从经验上讲,我们评估了经过标准数据集拟议损失的各种分类器的性能,在清洁和健壮的表现方面同时提高了1 \%的改进,同时将培训时间降低了20 \%,而不是表现最好的方法。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
我们介绍了嘈杂的特征混音(NFM),这是一个廉价但有效的数据增强方法,这些方法结合了基于插值的训练和噪声注入方案。不是用凸面的示例和它们的标签的凸面组合训练,而不是在输入和特征空间中使用对数据点对的噪声扰动凸组合。该方法包括混合和歧管混合作为特殊情况,但它具有额外的优点,包括更好地平滑决策边界并实现改进的模型鲁棒性。我们提供理论要理解这一点以及NFM的隐式正则化效果。与混合和歧管混合相比,我们的理论得到了经验结果的支持,展示了NFM的优势。我们表明,在一系列计算机视觉基准数据集中,使用NFM培训的剩余网络和视觉变压器在清洁数据的预测准确性和鲁棒性之间具有有利的权衡。
translated by 谷歌翻译
We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by 11.41% in terms of mean 2 perturbation distance.
translated by 谷歌翻译
在本讨论文件中,我们调查了有关机器学习模型鲁棒性的最新研究。随着学习算法在数据驱动的控制系统中越来越流行,必须确保它们对数据不确定性的稳健性,以维持可靠的安全至关重要的操作。我们首先回顾了这种鲁棒性的共同形式主义,然后继续讨论训练健壮的机器学习模型的流行和最新技术,以及可证明这种鲁棒性的方法。从强大的机器学习的这种统一中,我们识别并讨论了该地区未来研究的迫切方向。
translated by 谷歌翻译
对抗性培训(AT)已成为培训强大网络的热门选择。然而,它倾向于牺牲清洁精度,以令人满意的鲁棒性,并且遭受大的概括误差。为了解决这些问题,我们提出了平稳的对抗培训(SAT),以我们对损失令人歉端的损失的终人谱指导。 We find that curriculum learning, a scheme that emphasizes on starting "easy" and gradually ramping up on the "difficulty" of training, smooths the adversarial loss landscape for a suitably chosen difficulty metric.我们展示了对普通环境中的课程学习的一般制定,并提出了一种基于最大Hessian特征值(H-SAT)和软MAX概率(P-SA)的两个难度指标。我们展示SAT稳定网络培训即使是大型扰动规范,并且允许网络以更好的清洁精度运行而与鲁棒性权衡曲线相比。与AT,交易和其他基线相比,这导致清洁精度和鲁棒性的显着改善。为了突出一些结果,我们的最佳模型将分别在CIFAR-100上提高6%和1%的稳健准确性。在Imagenette上,一个十一级想象成的子集,我们的模型分别以正常和强大的准确性达到23%和3%。
translated by 谷歌翻译
对抗性可转移性是一种有趣的性质 - 针对一个模型制作的对抗性扰动也是对另一个模型有效的,而这些模型来自不同的模型家庭或培训过程。为了更好地保护ML系统免受对抗性攻击,提出了几个问题:对抗性转移性的充分条件是什么,以及如何绑定它?有没有办法降低对抗的转移性,以改善合奏ML模型的鲁棒性?为了回答这些问题,在这项工作中,我们首先在理论上分析和概述了模型之间的对抗性可转移的充分条件;然后提出一种实用的算法,以减少集合内基础模型之间的可转换,以提高其鲁棒性。我们的理论分析表明,只有促进基础模型梯度之间的正交性不足以确保低可转移性;与此同时,模型平滑度是控制可转移性的重要因素。我们还在某些条件下提供了对抗性可转移性的下界和上限。灵感来自我们的理论分析,我们提出了一种有效的可转让性,减少了平滑(TRS)集合培训策略,以通过实施基础模型之间的梯度正交性和模型平滑度来培训具有低可转换性的强大集成。我们对TRS进行了广泛的实验,并与6个最先进的集合基线进行比较,防止不同数据集的8个白箱攻击,表明所提出的TRS显着优于所有基线。
translated by 谷歌翻译
在对抗文献中,鲁棒性和准确性之间的权衡得到了广泛的研究。尽管仍然有争议,但普遍的观点是,从经验或理论上,这种权衡是固有的。因此,我们在对抗训练中挖掘了这种权衡的起源,发现它可能源于不当定义的可靠错误,该错误施加了局部不变性的诱导偏见 - 对平稳性的过度校正。鉴于此,我们主张采用局部模棱两可来描述健壮模型的理想行为,从而导致自洽的强大错误称为得分。根据定义,得分有助于稳健性与准确性之间的对帐,同时仍通过稳健优化处理最坏情况的不确定性。通过简单地将KL差异替换为距离指标的变体,得分可以有效地最小化。从经验上讲,我们的模型在AutoAttact下的强力板上实现了最高的性能。此外,得分提供了指导性见解,以解释在健壮模型上观察到的过度拟合现象和语义输入梯度。代码可在https://github.com/p2333/score上找到。
translated by 谷歌翻译
对抗性例子的现象说明了深神经网络最基本的漏洞之一。在推出这一固有的弱点的各种技术中,对抗性训练已成为学习健壮模型的最有效策略。通常,这是通过平衡强大和自然目标来实现的。在这项工作中,我们旨在通过执行域不变的功能表示,进一步优化鲁棒和标准准确性之间的权衡。我们提出了一种新的对抗训练方法,域不变的对手学习(DIAL),该方法学习了一个既健壮又不变的功能表示形式。拨盘使用自然域及其相应的对抗域上的域对抗神经网络(DANN)的变体。在源域由自然示例组成和目标域组成的情况下,是对抗性扰动的示例,我们的方法学习了一个被限制的特征表示,以免区分自然和对抗性示例,因此可以实现更强大的表示。拨盘是一种通用和模块化技术,可以轻松地将其纳入任何对抗训练方法中。我们的实验表明,将拨号纳入对抗训练过程中可以提高鲁棒性和标准精度。
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
深度神经网络很容易被称为对抗攻击的小扰动都愚弄。对抗性培训(AT)是一种近似解决了稳健的优化问题,以最大限度地减少最坏情况损失,并且被广泛认为是对这种攻击的最有效的防御。由于产生了强大的对抗性示例的高计算时间,已经提出了单步方法来减少培训时间。然而,这些方法遭受灾难性的过度装备,在训练期间侵犯准确度下降。虽然提出了改进,但它们增加了培训时间和稳健性远非多步骤。我们为FW优化(FW-AT)开发了对抗的对抗培训的理论框架,揭示了损失景观与$ \ ell_2 $失真之间的几何连接。我们分析地表明FW攻击的高变形相当于沿攻击路径的小梯度变化。然后在各种深度神经网络架构上进行实验证明,$ \ ell \ infty $攻击对抗强大的模型实现近乎最大的$ \ ell_2 $失真,而标准网络具有较低的失真。此外,实验表明,灾难性的过度拟合与FW攻击的低变形强烈相关。为了展示我们理论框架的效用,我们开发FW-AT-Adap,这是一种新的逆势训练算法,它使用简单的失真度量来调整攻击步骤的数量,以提高效率而不会影响鲁棒性。 FW-AT-Adapt提供培训时间以单步快速分配方法,并改善了在白色盒子和黑匣子设置中的普发内精度的最小损失和多步PGD之间的差距。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
对抗训练(AT)在防御对抗例子方面表现出色。最近的研究表明,示例对于AT期间模型的最终鲁棒性并不同样重要,即,所谓的硬示例可以攻击容易表现出比对最终鲁棒性的鲁棒示例更大的影响。因此,保证硬示例的鲁棒性对于改善模型的最终鲁棒性至关重要。但是,定义有效的启发式方法来寻找辛苦示例仍然很困难。在本文中,受到信息瓶颈(IB)原则的启发,我们发现了一个具有高度共同信息及其相关的潜在表示的例子,更有可能受到攻击。基于此观察,我们提出了一种新颖有效的对抗训练方法(Infoat)。鼓励Infoat找到具有高相互信息的示例,并有效利用它们以提高模型的最终鲁棒性。实验结果表明,与几种最先进的方法相比,Infoat在不同数据集和模型之间达到了最佳的鲁棒性。
translated by 谷歌翻译
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
translated by 谷歌翻译
在对抗性鲁棒性的背景下,单个模型通常没有足够的力量来防御所有可能的对抗攻击,因此具有亚最佳的鲁棒性。因此,新兴的工作重点是学习神经网络的合奏,以防止对抗性攻击。在这项工作中,我们采取了一种有原则的方法来建立强大的合奏。我们从增强保证金的角度观察了这个问题,并开发了一种学习最大利润的合奏的算法。通过在基准数据集上进行广泛的经验评估,我们表明我们的算法不仅超过了现有的结合技术,而且还以端到端方式训练的大型模型。我们工作的一个重要副产品是边缘最大化的跨肠损失(MCE)损失,这是标准跨侧面(CE)损失的更好替代方法。从经验上讲,我们表明,用MCE损失取代最先进的对抗训练技术中的CE损失会导致显着提高性能。
translated by 谷歌翻译
The evaluation of robustness against adversarial manipulation of neural networks-based classifiers is mainly tested with empirical attacks as methods for the exact computation, even when available, do not scale to large networks. We propose in this paper a new white-box adversarial attack wrt the l p -norms for p ∈ {1, 2, ∞} aiming at finding the minimal perturbation necessary to change the class of a given input. It has an intuitive geometric meaning, yields quickly high quality results, minimizes the size of the perturbation (so that it returns the robust accuracy at every threshold with a single run). It performs better or similar to stateof-the-art attacks which are partially specialized to one l p -norm, and is robust to the phenomenon of gradient masking.
translated by 谷歌翻译
许多最先进的对抗性培训方法利用对抗性损失的上限来提供安全保障。然而,这些方法需要在每个训练步骤中计算,该步骤不能包含在梯度中的梯度以进行反向化。我们基于封闭形式的对抗性损失的封闭溶液引入了一种新的更具内容性的对抗性培训,可以有效地培养了背部衰退。通过稳健优化的最先进的工具促进了这一界限。我们使用我们的方法推出了两种新方法。第一种方法(近似稳健的上限或arub)使用网络的第一阶近似以及来自线性鲁棒优化的基本工具,以获得可以容易地实现的对抗丢失的近似偏置。第二种方法(鲁棒上限或摩擦)计算对抗性损失的精确上限。在各种表格和视觉数据集中,我们展示了我们更加原则的方法的有效性 - 摩擦比最先进的方法更强大,而是较大的扰动的最新方法,而谷会匹配的性能 - 小扰动的艺术方法。此外,摩擦和灌注速度比标准对抗性培训快(以牺牲内存增加)。重现结果的所有代码都可以在https://github.com/kimvc7/trobustness找到。
translated by 谷歌翻译
最大限度的训练原则,最大限度地减少最大的对抗性损失,也称为对抗性培训(AT),已被证明是一种提高对抗性鲁棒性的最先进的方法。尽管如此,超出了在对抗环境中尚未经过严格探索的最小最大优化。在本文中,我们展示了如何利用多个领域的最小最大优化的一般框架,以推进不同类型的对抗性攻击的设计。特别是,给定一组风险源,最小化最坏情况攻击损失可以通过引入在域集的概率单纯x上最大化的域权重来重新重整为最小最大问题。我们在三次攻击生成问题中展示了这个统一的框架 - 攻击模型集合,在多个输入下设计了通用扰动,并制作攻击对数据转换的弹性。广泛的实验表明,我们的方法导致对现有的启发式策略以及对培训的最先进的防御方法而言,鲁棒性改善,培训对多种扰动类型具有稳健。此外,我们发现,从我们的MIN-MAX框架中学到的自调整域权重可以提供整体工具来解释跨域攻击难度的攻击水平。代码可在https://github.com/wangjksjtu/minmaxsod中获得。
translated by 谷歌翻译