强大的深度学习技术的发展为社会和个人带来了一些负面影响。一个这样的问题是假媒体的出现。为了解决这个问题,我们组织了可信赖的媒体挑战(TMC)来探讨人工智能(AI)如何利用如何打击假媒体。我们与挑战一起发布了一个挑战数据集,由4,380张假和2,563个真实视频组成。所有这些视频都伴随着Audios,采用不同的视频和/或音频操作方法来生产不同类型的假媒体。数据集中的视频具有各种持续时间,背景,照明,最小分辨率为360p,并且可能包含模拟传输误差和不良压缩的扰动。我们还开展了用户学习,以展示所作数据集的质量。结果表明,我们的数据集具有有希望的质量,可以在许多情况下欺骗人类参与者。
translated by 谷歌翻译
AI的最新进展,尤其是深度学习,导致创建新的现实合成媒体(视频,图像和音频)以及对现有媒体的操纵的创建显着增加,这导致了新术语的创建。 'deepfake'。基于英语和中文中的研究文献和资源,本文对Deepfake进行了全面的概述,涵盖了这一新兴概念的多个重要方面,包括1)不同的定义,2)常用的性能指标和标准以及3)与DeepFake相关的数据集,挑战,比赛和基准。此外,该论文还报告了2020年和2021年发表的12条与DeepFake相关的调查论文的元评估,不仅关注上述方面,而且集中在对关键挑战和建议的分析上。我们认为,就涵盖的各个方面而言,本文是对深层的最全面评论,也是第一个涵盖英语和中国文学和资源的文章。
translated by 谷歌翻译
人们对出于各种目的的人交谈的综合视频图像产生了浓厚的兴趣,包括娱乐,交流,培训和广告。随着深层伪造的模型的发展,合成视频图像很快将在视觉上与自然捕获视频的肉眼无法区分。此外,许多方法正在继续改进,以避免更谨慎,法医视觉分析。通过使用面部木偶来制作一些深层的虚假视频,该视频通过演员的动作直接控制合成图像的头部和面部,使演员可以将其“木偶”“木偶”“木偶”“木偶”“木偶”相同。在本文中,我们解决了一个问题,即是否可以通过控制扬声器的视觉外观,但从另一个来源转移行为信号来将一个人的动作与原始扬声器区分开。我们通过比较综合图像来进行研究:1)源自另一个人说不同话语的人,2)起源于同一人说的话不同,3)源自另一个人说相同的话语。我们的研究表明,在所有三种情况下,合成视频都比原始源视频不那么真实和吸引力。我们的结果表明,可以从一个人的动作中检测到​​与视觉外观分开的行为签名,并且可以使用这种行为签名来区分深处的伪造与正确捕获的视频。
translated by 谷歌翻译
在今天的数字错误信息的时代,我们越来越受到视频伪造技术构成的新威胁。这种伪造的范围从Deepfakes(例如,复杂的AI媒体合成方法)的经济饼(例如,精致的AI媒体合成方法)从真实视频中无法区分。为了解决这一挑战,我们提出了一种多模态语义法医法,可以发现超出视觉质量差异的线索,从而处理更简单的便宜赌注和视觉上有说服力的德国。在这项工作中,我们的目标是验证视频中看到的据称人士确实是通过检测他们的面部运动与他们所说的词语之间的异常对应。我们利用归因的想法,以了解特定于人的生物识别模式,将给定发言者与他人区分开来。我们使用可解释的行动单位(AUS)来捕捉一个人的面部和头部运动,而不是深入的CNN视觉功能,我们是第一个使用字样的面部运动分析。与现有的人特定的方法不同,我们的方法也有效地对抗专注于唇部操纵的攻击。我们进一步展示了我们的方法在培训中没有看到的一系列假装的效率,包括未经视频操纵的培训,这在事先工作中没有解决。
translated by 谷歌翻译
深度学习已成功地用于解决从大数据分析到计算机视觉和人级控制的各种复杂问题。但是,还采用了深度学习进步来创建可能构成隐私,民主和国家安全威胁的软件。最近出现的那些深度学习驱动的应用程序之一是Deepfake。 DeepFake算法可以创建人类无法将它们与真实图像区分开的假图像和视频。因此,可以自动检测和评估数字视觉媒体完整性的技术的建议是必不可少的。本文介绍了一项用于创造深击的算法的调查,更重要的是,提出的方法旨在检测迄今为止文献中的深击。我们对与Deepfake技术有关的挑战,研究趋势和方向进行了广泛的讨论。通过回顾深层味和最先进的深层检测方法的背景,本研究提供了深入的深层技术的概述,并促进了新的,更强大的方法的发展,以应对日益挑战性的深击。
translated by 谷歌翻译
作为内容编辑成熟的工具,以及基于人工智能(AI)综合媒体增长的算法,在线媒体上的操纵内容的存在正在增加。这种现象导致错误信息的传播,从而更需要区分“真实”和“操纵”内容。为此,我们介绍了Videosham,该数据集由826个视频(413个真实和413个操纵)组成。许多现有的DeepFake数据集专注于两种类型的面部操作 - 与另一个受试者的面部交换或更改现有面部。另一方面,Videosham包含更多样化的,上下文丰富的和以人为本的高分辨率视频,使用6种不同的空间和时间攻击组合来操纵。我们的分析表明,最新的操纵检测算法仅适用于一些特定的攻击,并且在Videosham上不能很好地扩展。我们在亚马逊机械土耳其人上进行了一项用户研究,其中1200名参与者可以区分Videosham中的真实视频和操纵视频。最后,我们更深入地研究了人类和sota-Algorithms表演的优势和劣势,以识别需要用更好的AI算法填补的差距。
translated by 谷歌翻译
本文介绍了我们DFGC 2022竞赛的摘要报告。深层味道正在迅速发展,现实的面部折叠变得越来越欺骗性和难以检测。相反,检测深击的方法也正在改善。 Deepfake创作者和防守者之间有两党的比赛。这项竞赛提供了一个通用平台,用于基准在DeepFake创建和检测方法中当前最新的游戏之间的游戏。这场比赛要回答的主要研究问题是彼此竞争时两个对手的现状。这是去年DFGC 2021之后的第二版,具有新的,更多样化的视频数据集,更现实的游戏设置以及更合理的评估指标。通过这项竞争,我们旨在激发研究思想,以建立对深层威胁的更好的防御能力。我们还发布了我们的参与者和我们自己的DFGC 2022数据集,以丰富研究社区的DeepFake数据资源(https://github.com/nice-x/dfgc-2022)。
translated by 谷歌翻译
Video synthesis methods rapidly improved in recent years, allowing easy creation of synthetic humans. This poses a problem, especially in the era of social media, as synthetic videos of speaking humans can be used to spread misinformation in a convincing manner. Thus, there is a pressing need for accurate and robust deepfake detection methods, that can detect forgery techniques not seen during training. In this work, we explore whether this can be done by leveraging a multi-modal, out-of-domain backbone trained in a self-supervised manner, adapted to the video deepfake domain. We propose FakeOut; a novel approach that relies on multi-modal data throughout both the pre-training phase and the adaption phase. We demonstrate the efficacy and robustness of FakeOut in detecting various types of deepfakes, especially manipulations which were not seen during training. Our method achieves state-of-the-art results in cross-manipulation and cross-dataset generalization. This study shows that, perhaps surprisingly, training on out-of-domain videos (i.e., videos with no speaking humans), can lead to better deepfake detection systems. Code is available on GitHub.
translated by 谷歌翻译
Figure 1: FaceForensics++ is a dataset of facial forgeries that enables researchers to train deep-learning-based approaches in a supervised fashion. The dataset contains manipulations created with four state-of-the-art methods, namely, Face2Face, FaceSwap, DeepFakes, and NeuralTextures.
translated by 谷歌翻译
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for large-scale datasets. However, current DeepFake datasets suffer from low visual quality and do not resemble Deep-Fake videos circulated on the Internet. We present a new large-scale challenging DeepFake video dataset, Celeb-DF, which contains 5, 639 high-quality DeepFake videos of celebrities generated using improved synthesis process. We conduct a comprehensive evaluation of DeepFake detection methods and datasets to demonstrate the escalated level of challenges posed by Celeb-DF.
translated by 谷歌翻译
Face manipulation technology is advancing very rapidly, and new methods are being proposed day by day. The aim of this work is to propose a deepfake detector that can cope with the wide variety of manipulation methods and scenarios encountered in the real world. Our key insight is that each person has specific biometric characteristics that a synthetic generator cannot likely reproduce. Accordingly, we extract high-level audio-visual biometric features which characterize the identity of a person, and use them to create a person-of-interest (POI) deepfake detector. We leverage a contrastive learning paradigm to learn the moving-face and audio segment embeddings that are most discriminative for each identity. As a result, when the video and/or audio of a person is manipulated, its representation in the embedding space becomes inconsistent with the real identity, allowing reliable detection. Training is carried out exclusively on real talking-face videos, thus the detector does not depend on any specific manipulation method and yields the highest generalization ability. In addition, our method can detect both single-modality (audio-only, video-only) and multi-modality (audio-video) attacks, and is robust to low-quality or corrupted videos by building only on high-level semantic features. Experiments on a wide variety of datasets confirm that our method ensures a SOTA performance, with an average improvement in terms of AUC of around 3%, 10%, and 4% for high-quality, low quality, and attacked videos, respectively. https://github.com/grip-unina/poi-forensics
translated by 谷歌翻译
DeepFake是使用人工智能(AI)方法合成生成或操纵的内容或材料,以防止真实,并且可以包括音频,视频,图像和文本合成。与现有的调查论文相比,此调查与现有的调查文件相比具有不同的视角,主要专注于视频和图像Deewakes。该调查不仅评估了不同的DeepFake类别中的生成和检测方法,而且主要关注大多数现有调查中被忽视的音频Deewakes。本文重视分析并提供了一个独特的音频Deepfake研究来源,主要是从2016到2020年的范围。据我们所知,这是第一个专注于英语中音频Deewakes的调查。本次调查为读者提供了摘要1)不同的DeepFake类别2)如何创建和检测到它们3)该领域的最新趋势和检测方法中的缺点4)音频DeepFakes,如何更详细地创建和检测到它们这是本文的主要重点。我们发现生成的对抗性网络(GAN),卷积神经网络(CNN)和深神经网络(DNN)是创建和检测德刀的常见方式。在我们对超过140种方法的评估中,我们发现大多数重点都在视频Deewakes上,特别是在播放视频德国。我们发现,对于文本Deew,有更多的一代方法,但较少的检测方法,包括假新闻检测,这已成为一个有争议的研究领域,因为由于人类发电的假含量重叠的潜力。本文是完整调查的缩写版本,并揭示了研究音频Deew饼的清晰,特别是检测音频Deewakes。
translated by 谷歌翻译
现在,合成视觉媒体发电和操纵的加速增长已经达到了引起重大关注并对社会造成巨大恐吓的地步。当务之急需要自动检测网络涉及虚假数字内容,并避免危险人造信息的传播以应对这种威胁。在本文中,我们利用和比较了两种手工制作的功能(Sift和Hog)以及两种深层特征(Xpection和CNN+RNN),以进行深层捕获检测任务。当训练集和测试集之间存在不匹配时,我们还会检查这些功能的性能。评估是对著名的FaceForensics ++数据集进行的,该数据集包含四个子数据集,深盘,face2face,faceswap和neuralTextures。最好的结果来自Xception,当训练和测试集都来自同一子数据库时,精度可能会超过99 \%。相比之下,当训练集不匹配测试集时,结果急剧下降。这种现象揭示了创建通用深击检测系统的挑战。
translated by 谷歌翻译
由于滥用了深层,检测伪造视频是非常可取的。现有的检测方法有助于探索DeepFake视频中的特定工件,并且非常适合某些数据。但是,这些人工制品的不断增长的技术一直在挑战传统的深泡探测器的鲁棒性。结果,这些方法的普遍性的发展已达到阻塞。为了解决这个问题,鉴于经验结果是,深层视频中经常在声音和面部背后的身份不匹配,并且声音和面孔在某种程度上具有同质性,在本文中,我们建议从未开发的语音中执行深层检测 - 面对匹配视图。为此,设计了一种语音匹配方法来测量这两个方法的匹配度。然而,对特定的深泡数据集进行培训使模型过于拟合深层算法的某些特征。相反,我们提倡一种迅速适应未开发的伪造方法的方法,然后进行预训练,然后进行微调范式。具体而言,我们首先在通用音频视频数据集上预先培训该模型,然后在下游深板数据上进行微调。我们对三个广泛利用的DeepFake数据集进行了广泛的实验-DFDC,Fakeavceleb和DeepFaketimit。与其他最先进的竞争对手相比,我们的方法获得了显着的性能增长。还值得注意的是,我们的方法在有限的DeepFake数据上进行了微调时已经取得了竞争性结果。
translated by 谷歌翻译
Online media data, in the forms of images and videos, are becoming mainstream communication channels. However, recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost, which not only poses a serious threat to the trustworthiness of digital information but also has severe societal implications. This motivates a growing interest of research in media tampering detection, i.e., using deep learning techniques to examine whether media data have been maliciously manipulated. Depending on the content of the targeted images, media forgery could be divided into image tampering and Deepfake techniques. The former typically moves or erases the visual elements in ordinary images, while the latter manipulates the expressions and even the identity of human faces. Accordingly, the means of defense include image tampering detection and Deepfake detection, which share a wide variety of properties. In this paper, we provide a comprehensive review of the current media tampering detection approaches, and discuss the challenges and trends in this field for future research.
translated by 谷歌翻译
本文介绍了我们关于使用时间图像进行深泡探测的结果和发现。我们通过使用这些面部地标上的像素值构造图像(称为时间图像),模拟了在给定视频跨帧的468个面部标志物横跨给定视频框架中的临时关系。CNN能够识别给定图像的像素之间存在的空间关系。研究了10种不同的成像网模型。
translated by 谷歌翻译
深层伪造的面部伪造引起了严重的社会问题。愿景社区已经提出了几种解决方案,以通过自动化的深层检测系统有效地对待互联网上的错误信息。最近的研究表明,基于面部分析的深度学习模型可以根据受保护的属性区分。对于对DeepFake检测技术的商业采用和大规模推出,对跨性别和种族等人口变化的深层探测器的评估和了解(不存在任何偏见或偏爱)至关重要。由于人口亚组之间的深泡探测器的性能差异会影响贫困子组的数百万人。本文旨在评估跨男性和女性的深泡探测器的公平性。但是,现有的DeepFake数据集未用人口标签注释以促进公平分析。为此,我们用性别标签手动注释了现有的流行DeepFake数据集,并评估了整个性别的当前DeepFake探测器的性能差异。我们对数据集的性别标记版本的分析表明,(a)当前的DeepFake数据集在性别上偏斜了分布,并且(b)通常采用的深层捕获探测器在性别中获得不平等的表现,而男性大多数均优于女性。最后,我们贡献了一个性别平衡和注释的DeepFake数据集GBDF,以减轻性能差异,并促进研究和发展,以朝着公平意识到的深层假探测器。 GBDF数据集可公开可用:https://github.com/aakash4305/gbdf
translated by 谷歌翻译
在本文中,我们提出了一个神经端到端系统,用于保存视频的语音,唇部同步翻译。该系统旨在将多个组件模型结合在一起,并以目标语言的目标语言与目标语言的原始扬声器演讲的视频与目标语音相结合,但在语音,语音特征,面对原始扬声器的视频中保持着重点。管道从自动语音识别开始,包括重点检测,然后是翻译模型。然后,翻译后的文本由文本到语音模型合成,该模型重新创建了原始句子映射的原始重点。然后,使用语音转换模型将结果的合成语音映射到原始扬声器的声音。最后,为了将扬声器的嘴唇与翻译的音频同步,有条件的基于对抗网络的模型生成了相对于输入面图像以及语音转换模型的输出的适应性唇部运动的帧。最后,系统将生成的视频与转换后的音频结合在一起,以产生最终输出。结果是一个扬声器用另一种语言说话的视频而不真正知道。为了评估我们的设计,我们介绍了完整系统的用户研究以及对单个组件的单独评估。由于没有可用的数据集来评估我们的整个系统,因此我们收集了一个测试集并在此测试集上评估我们的系统。结果表明,我们的系统能够生成令人信服的原始演讲者的视频,同时保留原始说话者的特征。收集的数据集将共享。
translated by 谷歌翻译
智能手机已经使用基于生物识别的验证系统,以在高度敏感的应用中提供安全性。视听生物识别技术因其可用性而受欢迎,并且由于其多式化性质,欺骗性将具有挑战性。在这项工作中,我们介绍了一个在五个不同最近智能手机中捕获的视听智能手机数据集。考虑到不同的现实情景,这个新数据集包含在三个不同的会话中捕获的103个科目。在该数据集中获取三种不同的语言,以包括扬声器识别系统的语言依赖性问题。这些数据集的这些独特的特征将为实施新的艺术技术的单向或视听扬声器识别系统提供途径。我们还报告了DataSet上的基准标记的生物识别系统的性能。生物识别算法的鲁棒性朝向具有广泛实验的重播和合成信号等信号噪声,设备,语言和呈现攻击等多种依赖性。获得的结果提出了许多关于智能手机中最先进的生物识别方法的泛化特性的担忧。
translated by 谷歌翻译
最近的深层摄影的出现使操纵和生成的内容成为机器学习研究的最前沿。自动检测深击已经看到了许多新的机器学习技术,但是,人类的检测功能的探索功能要少得多。在本文中,我们介绍了比较人类和机器检测用于模仿某人声音的音频深击的能力的结果。为此,我们使用基于Web的应用程序框架作为游戏。要求参与者区分真实和假音频样本。在我们的实验中,有378位唯一用户与最先进的AI DeepFake检测算法竞争,以12540的比赛总数。我们发现,人类和深层检测算法具有相似的优势和劣势,都在努力检测某些类型的攻击。这与许多应用领域(例如对象检测或面部识别)中AI的超人性能形成对比。关于人类的成功因素,我们发现IT专业人员没有非专业人士的优势,但母语人士比非本地人的人具有优势。此外,我们发现年长的参与者往往比年轻的参与者更容易受到影响。在为人类设计未来的网络安全培训以及开发更好的检测算法时,这些见解可能会有所帮助。
translated by 谷歌翻译